IEEE TRANSACTIONS ON SERVICE COMPUTING

Resource Management for Latency-Sensitive
loT Applications with Satisfiability

Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar

Abstract—Satisfying the software requirements of emerging service-based Internet of Things (loT) applications has become
challenging for cloud-centric architectures, as applications demand fast response times and availability of computational resources
closer to end-users. Meeting application demands must occur at runtime, facing uncertainty and in a decentralized manner, something
that must be reflected in system deployment. We propose a decentralized resource management technique and accompanying
technical framework for the deployment of service-based loT applications at the edge. Faithful to services engineering, applications we
consider are composed of interdependent tasks, which in the 10T setting may be concretized as containerized microservices or
serverless functions. A deployment for an arbitrary application is found at runtime through satisfiability; the mapping produced is
compliant with tasks’ individual resource requirements and latency constraints by construction. Our approach ensures seamless
deployment at runtime, assuming no design-time knowledge of device resources or the current network topology. We evaluate the
applicability and realizability of our technique over single-board computers as edge devices, particularly in the absence of cloud

resources.
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1 INTRODUCTION

ontemporary Internet of Things (IoT) systems consist
C of multiple heterogeneous computing nodes often run-
ning software tasks packaged as containerized services.
Utilizing distributed computing resources within an IoT
system is challenging, as applications often have stringent
performance and deployment requirements.

Current cloud-centric designs fail to satisfy such require-
ments, due to inherent centralization limitations and the
often high volumes of data required to be transferred to
the cloud leading to congestion and bandwidth waste [1].
Those shortcomings can be tackled by taking advantage of
distributed computational resources in the spirit of edge
computing, where data processing occurs locally by func-
tionality deployed on edge nodes, with advantages includ-
ing data locality and fast response times [2].

IoT applications are often comprised of multiple inter-
connected tasks in turn characterised by special resource
requirements which must be fulfilled upon deployment.
This is in line with typical service-oriented applications, i.e.,
ones defined as a service composition, where interconnected
services create a workflow to achieve a certain goal [3]. As
such, we work within Service-Oriented Architectures (SOA),
which in the IoT setting ensure interoperability among
heterogeneous nodes making up the system, and abstract
functionality as a set of well-defined services. SOA applied
to IoT provides extensibility, scalability, modularity, and in-
teroperability among heterogeneous software components;
functionalities and capabilities are abstracted as a common
set of tasks, where each represents a service.

Consider an application that is particularly data-
intensive and requires low latency communication to func-
tion properly. To satisfy its requirements, a deployment
strategy should as much as possible take advantage of
available resources distributed at the edge of the network
and avoid utilization of the cloud, as latency would be pro-

hibitive and uplink bandwidth may be saturated. However,
benefiting from distributed computational resources is not
trivial and requires novel resource management techniques.

Resource management in this context [4] aims at en-
abling collaboration between edge nodes by sharing their
available computational resources. IoT applications are de-
ployed on possibly resource-constrained devices and in
dynamic networks where high uncertainty is introduced
by (i) node mobility, (ii) node heterogeneity, as an edge
node can range from single-board computer to datacenter-
grade, and (iii) lack of knowledge at design time of network
topology and edge nodes’ available resources. We propose
a novel resource management technique focusing partic-
ularly on resource sharing and allocation for application
deployment. Previously, deployment of applications at the
edge of the network has been generally tackled from two
perspectives: (i) task offloading from resource-constrained
devices to improve objectives such as energy consump-
tion [5] or (ii) relying on the cloud to perform task allo-
cation [6]. Still, such approaches do not sufficiently take into
account latency application requirements, do not consider
node’s preferences, and assume knowledge of participant
nodes’ internals. We have tackled resource management in
previous work, providing (i) resource coordination for IoT
systems [7], investigated (ii) research challenges inherent in
decentralized resource management at the edge [8], and in-
troduced (iii) resource auctioning as a resource management
abstraction [9].

In this paper, we propose a decentralized resource allo-
cation technical framework aiming to deploy applications
at the edge of the network, guaranteeing adherence to
(i) defined latency Service Level Agreements (SLAs) and
(ii) resource preferences of participating nodes. We extend
previous work [9] by focusing solely on task allocation per-
formed by a resource-constrained single-board device, by
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providing optimized procedures, and by framing our work
within services engineering. Specifically, our contributions
are:

e A decentralized task allocation technique for sharing
IoT resources with nearby nodes based on applica-
tion requirements;

e A scheme where participating nodes on the network
may utilize multiple decision strategies, making their
own choices regarding their contribution of their
local resources, including data;

o We advocate decentralization, as the system can op-
erate without an assumed connection to the cloud, if
there are enough available resources at the edge of
the network.

In our framework, an IoT application to be deployed
consists of interdependent discrete tasks, which can be con-
cretized as, e.g., containerized microservices or serverless
functions. Nodes participating in the system individually se-
lect tasks they may host — perhaps based on some incentive
scheme [10], [11]. The overall application has certain (strict)
latency requirements, while other concerns may impose
further constraints over where a task may be deployed as
well. Our framework encodes the resource allocation prob-
lem within Satisfiability Modulo Theories (SMT [12]), where
placement of tasks on edge nodes generates constraints
in first-order logic while latency SLAs are encoded with
integer linear arithmetic. Thus, we provide guarantees — if
a mapping exists, it is always found at runtime by a solver
situated in some edge node deploying the application, and
is always correct, i.e., it satisfies latency SLAs, preferences
of participating nodes, and other constraints.

Our framework provides seamless deployment for
service-based IoT applications, independent of the target
domain. We evaluate the applicability and performance of
our technique, especially compared to the absence of cloud
resources. OQur obtained results demonstrate its efficiency
for relevant problems, particularly on resource-constrained
single-board edge devices. Our experiments show that our
framework is capable of deploying loT applications entirely
at the edge, the SMT solver providing the mapping being
deployed on a resource-constrained device as well.

The remainder of the paper is structured as follows.
In Section 2, we present an overview of our solution and
introduce a motivational example. Section 3 defines the IoT
application and architecture considered in this paper. In
Section 4, we describe implementation details of our pro-
posed technique, while Section 5 presents the methodology
and results of our evaluation regarding applicability and
performance. Section 6 discusses related work on resource
allocation techniques, and finally Section 7 concludes the
paper and provides an outlook on future work.

2 DECENTRALIZED RESOURCE MANAGEMENT

Novel types of distributed systems achieved through new
paradigms such as the IoT are composed of heterogeneous
nodes, computing infrastructures, and cloud services, re-
cently known as the edge-fog-cloud continuum [13]. Gen-
erally, applications provide data-centric, device-centric, and
service-centric functionalities where data, computation, or
control is situated locally near nodes and not in the cloud.
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As such, resources needed for the application’s operation
must be dynamically allocated among different nodes and in
a decentralized manner, with minimal central coordination.

Faithful to the services engineering viewpoint, we as-
sume a general model where an IoT application is composed
of interdependent fasks which need to be executed in some
specific way to provide the application’s functionality [3],
[5]. Within the IoT context, tasks may be concretized as
e.g., containerized microservices or serverless functions.
Applications have a single point of entry (the initial task)
and some sink (or final) task, signifying the result of the
computation (i.e., the service composition). Within the IoT
setting, those tasks may be deployed on different networked
physical nodes. Network latency between edge nodes must
be also taken into account, as it may affect the overall appli-
cation execution time. More precisely, latency is understood
as an adherence to certain defined Service Level Agreements
(SLAs) and represents the time required for a message to
traverse the application’s communication flow (i.e., from the
input data task to a sink task). As nodes may participate
in multiple application deployments at the same time, they
may thus contribute different resources of their own to each,
perhaps based on some reward mechanism.
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Fig. 1. Resource Management: From design time to runtime.

The functionality of the framework we advocate revolves
around two key concepts; decentralization and node partic-
ipation. To encourage edge nodes to participate and share
resources with applications on the network, we assume that
an incentive mechanism exists that offers rewards based on
the involvement of a participant node. As such, the frame-
work establishes collaboration between nodes to achieve the
deployment goal. Two key components can be found in our
solution: the coordinator node, which seeks to deploy some
application and the collaborator nodes, which are the system
participants. Any edge node can in principle take any of
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those roles. Once a request for deployment of an application
arrives, a list of participants is created. We consider some
limited number of them, chosen based on some manifesta-
tion of proximity to the coordinator node. The coordinator
serves as the local decision making authority, by advertising
the IoT application to the nearby participants and eventually
deciding a task distribution that satisfies latency, preferences
of participants and other requirements. Collaborator nodes
offer resources for parts of the application, at their own
preference and based on their current state of available
resources. Our framework provides seamless deployment of
applications with latency requirements; as illustrated in Fig-
ure 1, the application designer defines the building blocks of
an application (as tasks) as well as their dependencies in an
application model, at design time — essentially the service
composition. In practice, tasks are concretized as container-
ized microservices. When the system is operational, tasks
are deployed to appropriate nodes so that requirements are
satisfied, without requiring any knowledge of the current
network topology.

Running example.

Consider a public safety application that aids law en-
forcement officers to identify wanted persons in a crowd
by performing video analysis utilizing available resources
found in their proximity; this is performed by processing
video captured from the police officer’s body camera, or on
video and images stored in nearby edge nodes (i.e., other
smartphones, tablets, dashboard cameras, etc.). Such video
analysis is computation-intensive and may require special-
ized hardware running machine learning workloads, such
as tensor processing units. The officer’s smartphone (or dash
cam) represents the application coordinator which is con-
nected to his/her body camera. The application, illustrated
in Figure 2, consists of multiple distinct services (abstracted
as tasks) including (i) motion detection, (ii) object detection,
(iii) object tracking, and (iv) result generation; arrows indi-
cate the invocation of tasks within the application workflow.

Deploying such an application to a centralized location
is not desirable due to its stringent requirements as well
as inherent privacy concerns — video data should not be
stored in a remote centralized location. First, we can observe
that the decentralized nature of our technique fits well the
application requirements since it handles video without
sending it to a central facility for processing. Furthermore,
the particular application is data-intensive, as vast amounts
of generated data are analyzed. The centralization imposed
by a cloud design has implications for both network con-
gestion as well as latency, among others. Moreover, some
tasks may require specialized device resources (e.g., the
object detection task may require machine learning support-
ing hardware), making deployment on a single edge node
which does not possess such capabilities infeasible. Consid-
ering this, deployment on nearby end-devices is advised —
in this manner, computation and data management can be
performed closer to the targeted area and distributed among
participating nodes.

3 PROBLEM FORMULATION

The objective of taking advantage of resources distributed
among multiple interconnected nodes lies at the core of edge
computing [14]. Application deployment implies utilization
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of these distributed resources. We consider an application
modeled as a collection of tasks, each having a set of
resource requirements that must be fulfilled under a set
of application objectives. In this section, we outline our
system model and the assumptions behind it, as well as the
objectives that we consider.

3.1 Application and System Model

The edge computing setting we consider, is a distributed
system consisting of multiple, possibly heterogeneous edge
nodes. Nodes, with different architectures (ranging from
mobile devices and single-board computers to powerful
edge data centers), are capable of executing tasks and to
communicate with others. Each edge node has a certain set
of available resources E,es={ri, ra, ... } that can be shared
within the network. Let EN={E;, E,, ... } be the group of
nodes selected by the coordinator. Finally, we assume that
nodes collaborate and share resources willingly. We point
out the importance of suitable incentive mechanisms to
provide rewards to nodes that share resources and behave
cooperatively instead of competitively, and identify their
development as future work.

To fully utilize nearby available computational re-
sources, an application may be deployed on different edge
nodes. We note that faithfully to SOA principles, a parti-
tion of application functionality into tasks is typical within
distributed edge computing architectures, where the execu-
tion of an entire application may not fit on a single edge
node [15]. For example, one could deploy the application
described in the previous section, on a single node if there
are enough available resources, but performance will be
hindered. Moreover, considering that data of interest is dis-
tributed among multiple nodes, deploying the application
on a single edge node is not feasible since data must be sent
to a central point, increasing communication latency while
failing to preserve tasks’ requirements.

An application model is defined by the developer at
design time and consists of a set of tasks T={ty, to, ... }, along
with links representing communication flow. We assume
that this flow starts with a source task which provides
source data e.g., from an IoT sensor, and a sink, i.e., an
actuator task, to take actions on the obtained results. More
concretely, we assume that an application model is de-
scribed by a direct acyclic graph (DAG), G,pp = (V, E), where
vertices represent tasks and edges shows the links between
them. Considering this, we can model our motivational
example as shown in Figure 2. We abstain from application
particulars such as how coordination occurs at the business
logic level; our approach is concerned with finding a suit-
able deployment strategy across the edge network. Given
the application model, our technique is agnostic about the
inner workings of the deployed application.

t0: Camera t1: Motion t2: Obj. t4: Result
) Detection Detector generation
t3: Obj.
Tracker

Fig. 2. Public Safety application model.



IEEE TRANSACTIONS ON SERVICE COMPUTING

A task t; represents a containerized microservice or
serverless function, which implements a set of instructions
that perform application business logic. Each task may re-
quire distinct computational or other resources. To this end,
we assume that a task is defined by a set of resource require-
ments, Treq={r1, r2, ... }, that may consist not only of generic
memory, storage, and computational aspects but also could
represent specific requirements like data, domain-specific
hardware such as machine learning accelerators, sensors,
or actuators. For example, a particular requirement, for the
motion detection microservice of our example, besides com-
putational resources, like RAM, CPU and storage capacity, is
represented by the collected data from a specific area during
a time frame.

A communication link between two edge nodes, E; and
E>, has an associated latency Ig, g,; latency is inherited by
tasks from their host node. For example, if t; is mapped on
E; and t; on Ejp, the communication latency of I, 4, is equal
to lg, g,. Furthermore, the latency is computed as the sum of
all communication delays between dependent tasks along
the application’s communication flow. Acknowledging the
important role of latency, a latency monitoring function is
imperative to the overall functionality. We consider this out
of our scope as we work on a model level; we assume that
latency is adequately measured and provided.

3.2 Objectives

Applications may be deployed across different connected
nodes, making latency induced due to network and distri-
bution a prime concern. A secondary concern highly perti-
nent to peer-to-peer systems, is edge node’s resource pref-
erences; participant nodes should be able to take decisions
on how many (and how much of) resources to share and
for what tasks, according to internal strategies defined by
their administrative entity and possibly by other incentives.
We treat those two concerns as key drivers, which must be
satisfied upon deployment.

Our first objective targets one of the fundamental con-
cerns of edge applications. We focus on a particular mani-
festation of latency, which is the e2e (end-to-end) delay of
an application when operational. The e2e delay is defined by
the duration of time required by an application to produce a
result from received source data. For example, the e2e delay
of our example application (Figure 2) captures the duration
of time for t; to generate a result once t; collects data from
its sensors. We assume that the desired e2e delay (as an SLA)
for an application is defined at design time.

Our second objective is to respect resource preferences
of participating nodes. Each node has authority on how
its resources (including hardware or sensing capabilities)
are shared with others — data that may reside locally are
similarly treated. We achieve this behaviour by enabling
edge nodes to take decisions locally, which guarantees the
mapping of tasks where data or resources reside as dictated
by participating nodes.

Note that a centralized solution where the coordinator
resides in the cloud is generally and traditionally possible.
However, we target decentralized edge-intensive systems,
where (i) a connection to the cloud (for all participating
nodes) cannot be assumed, and (ii) we seek to avoid the
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single point of failure that such an arrangement would intro-
duce - in fact, any participating edge node (with or without
a cloud connection) can serve the role of a coordinator.

4 RESOURCE MANAGEMENT FRAMEWORK

An overview of our resource management technique is
presented in Figure 3, showing the internal exchange be-
tween different modules as well as the communication
between an application coordinator and a collaborator when
an application is deployed. Two major components define
our proposed technical framework- (i) the deployment pol-
icy module, implementing decentralized resource allocation
functionality which aims to deploy an application without
prior knowledge of edge nodes” available resources, and (ii)
the decision policy module, where multiple decision strategies
enable participant nodes to take local decisions regarding
their current available resources.
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Fig. 3. Resource management: deployment & dataflow diagram.

4.1 Deployment policy module

We design the deployment policy module with the purpose
of distributing tasks to a set of participants such that the
overall application requirements are satisfied. Therefore, the
functionality of this module captures the base capabilities of
the coordinator node and consists of two different stages:

1) Advertising stage. Once an inquiry for application
deployment is received, the application coordinator
creates a message containing the tasks application
model which is advertised to each participant node.
The coordinator allocates a bounded time frame for
receiving node’s preferences; if during this period a
node does not send its preferences, then the node is
not considered for deployment.

2) Deployment stage. When all preferences arrive, the
deployment stage starts. The coordinator finds a
satisfiable allocation of tasks to participant nodes
by considering the application requirements and
participant preferences; a node preference can be
partial or fully fulfilled.
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We note that for complex resource allocation problems,
research efforts in the field have proposed solutions based
on metaheuristic optimization algorithms. As a result, a
centralized solution where the coordinator is deployed in
the cloud or on nodes with powerful computational re-
sources is followed [16], [17]. Such solutions typically yield
a near-optimal solution over a longer period of time. Our
differences to these approaches are as follows. Firstly, our
target domain is edge computing where (i) edge nodes may
have limited computational resources, and (ii) latency and
nodes’ preferences are first-class concerns. Secondly, we aim
for guarantees. Our approach provides a satisfiable solution
that does not represent the near-optimal task allocation,
but arguably more valuable in a dynamic network settings
where the topology can change during execution render-
ing an optimized solution unnecessary. In metaheuristic
approaches, there are no guarantees that the generated so-
lution satisfies the objectives, especially if simulation time is
limited. In contrast, we choose to work within Satisfiability
Modulo Theories (SMT) [12], a generalization of the boolean
satisfiability problem. By casting the problem within SMT,
we provide guarantees that if a solution exists, it is found
and it correctly satisfies the application requirements.

Notice that SMT fits our resource allocation problem
particularly well; (i) the placement of tasks on nodes are es-
sentially constraints over the space of deployment options,
which can be encoded in first-order logic, and (ii) numerical
latency SLAs can be encoded by integer linear arithmetic.
Consequently, to solve our task allocation problem, we
divide our encoding into four different parts, i.e., the fask
facts, the domain facts, preferences constraints, and constraint
formulation. These capture different constraints over the
desired solution, and are illustrated in the following.

Task Facts. Firstly, we encode the logical placement of
a tasks. As a rule, a task t; can be deployed on an edge
node E, only if it is part of the task preferences sent by
that particular node. Furthermore, we ensure that in the
placement solution exactly one task t; is mapped on a node
En. For example, recall the motivational example application
of Section 2, composed of five tasks to, t1, tp, t3, and t4, on
an edge architecture with two nodes, i.e., E; and E;. Now,
let us assume that the coordinator receives the following
preferences: P1 = {[t3, t4]} from node E; and P, = {[t, to,
t3]} is received from E,. Based on the rules enforced by this
encoding, each participant node can receive the tasks that
are not common between P; and P,. However, the common
ones can be deployed only on one node, independent of
how many nodes prefer to receive it. The general formula
is shown in Formula 1, where nt represents the total num-
ber of tasks. The semantics of map() is to provide a task
allocation between t; and one participant, where participants
represents the set of nodes that preferred to share resources
for that particular task.

nt
taskFacts : /\(EI! E: map(t;i = E)), VE € participants. (1)
i=1
Domain Facts. These capture the latency between two
dependent tasks which are mapped on different nodes. The
latency is found by giving an analogy between the task
mapping derived from the task facts and their associated
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node latency. As a result, if a task t; is deployed on E; and
tp is deployed on E;, the communication latency between
t; and t, is equal to the communication latency of the two
edge nodes, i.e., E; and E;. The general formula is shown
in Formula 2, where I, 1, represents the latency between two
tasks, while IEhEj represents the latency between two nodes,
and ngy represents the total number of participant nodes.

D
domainFacts : /\(t; =E, =)= (y=leg)
=1 0
forD = {i,j} wherei € [0, n¢Jandj € [0, ngn].

To ensure the correct functionality of our deployment
technique and guarantee that the selected collaborator re-
ceives tasks that combined do not exceed its available
resources, we must incorporate in our encoding multiple
constraints for mapping tasks from the same P. Creating
such an encoding is not trivial since each participant com-
putes its preferences locally and the coordinator does not
know any information about the node’s available resources.
As a result, the coordinator makes a decision based on the
node preferences received. This functionality is defined in
the preferences constraints part explained below.

Preferences Constraints. We encode task allocation con-
straints by defining a preferences constraints function. Its
functionality entails creating a set of mapping rules to the
tasks to the boundary of an individual group. As a conse-
quence, only one group can be chosen from the preferences
sent by a participant. Recalling our motivating example, a
participant E; receives in the advertisement message the
motivation example application model and based on its own
decision strategies creates the following set of preferences
P = {p1, p2, p3, pa}, where p; contains a list of preferred
tasks, e.g., p1 = [t3, ta], p2 = [t1, t2], p3 = [t1, ta] and pg =
[t2, t3]. As a consequence, the coordinator can choose tasks
from a single group to be mapped on a participant node; a
group is obtained using a decision strategy, thus assuring
that a group will not exceed the available resources of that
particular node (i.e., the owner of P).

Let us consider that the coordinator chooses p> as the
best group sent within P. In this case, choosing p, means
that every other group from P cannot be satisfied, since it
will exceed the available resources of that node. However,
notice that there is a common task t, with ps. Hence, we
must guarantee that, if t, is mapped first on E;, we do
not block the tasks from p, or ps since with the current
information, both offers can be chosen. Now, if t; is mapped
on E;, only then the remaining tasks from ps are blocked.
In contrast, if t3 is chosen, then p; is blocked. The general
formula is shown in Formula 3, where # represents the total
number of node’s preferences received.

n

prefConstaint : /\((pl V op2 V p3 V pa) 3)
i=1

/\(p1 - !(pz V p3 V p4)))

e2eConstraint. Finally, the last component of the encod-
ing ensures that the deployment meets the latency SLA of
the application; e2eConstraint captures rules that account for
the latency in the e2e delay. To instrument a complete ap-
plication, the developer should additionally account for its
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execution overhead as well. As a result, Formula 4 ensures
that the sum of the communication latency ko is less or
equal than the total required SLA, where n. represents the
number of edges.

e2eConstraint : Z l; <SLA. 4)

i=1

By combining the aforementioned constraints, we obtain
the complete formula F used by the coordinator to find a
satisfiable allocation according to application requirements:

F :taskFacts A domainFacts A prefConstraints 5
A e2eConstraint. ©)
Solving F incurs an energy cost, something which has
to be accounted for since we target possibly resource con-
strained edge settings. The energy cost amounts to the
execution of an SMT solver against the formula — later,
we demonstrate that it is quite feasible to do so on single-
board computers for relevant problems. The energy draw
depends on the CPU power draw to solve F - full CPU
usage for certain amount of time, depending on the problem
size. Furthermore, executing the deployment policy also
introduces a communication cost, for which we can calculate
bounds for the exchanges required for each stage. In the
advertising stage, the coordinator node sends a message to
all participants and waits for their preferences. This stage
requires a total of 2*m messages, where m is the number of
nodes. In the deployment stage, the coordinator informs only
the nodes that will receive tasks, with a maximum of m.

4.2 Decision policy module

The decision policy module concerns strategies that a par-
ticipant uses to create a set of preferences P for an adver-
tised application. As previously mentioned, these strategies
enable the collaborator to create groups of preferred tasks
based on their own preferences and current internal state. As
such, nodes’ preferences are enforced since every decision is
made locally without sharing information with other nodes
in the network. Besides the feature of considering collabo-
rator’s task preferences, the strategies play a fundamental
role in the overall functionality — they ensure coverage of
tasks. Generally, to ensure that the application coordinator
receives at least one preference for every advertised task,
a consensus model is typically preferred where participant
nodes communicate with each other to decide for what tasks
to share their resources. However, in this scenario, there is
an increased communication overhead and a node does not
take decisions by itself; forcing the node to make compro-
mises according to the preferences of other nodes. As such,
in the following we outline some indicative strategies that
participants may use to create P.

We especially note that the coordinator has no control
over the participants’ task preferences; in our conception,
they are free to contribute (any) resources by sending tasks
preferences of the advertised application. The rationale of
giving participants free rein about their resource contribution
to the system is as follows. Every participant may decide to
adopt four default, indicative tactics to increase the number
of groups sent in an instance of P. These intend to aim for
greater coverage without requiring any information from
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other nodes. Each tactic has a different role in creating a
group of preferred tasks. Hence, we conceptually group
them based on their role in two different strategies.

Maximization Strategy. The first strategy aims to max-
imize the number of tasks, placed in a group (ie., pi),
by utilizing all the available resources of a node, using
two tactics. The first tactic is based on the well-known 0-
1 knapsack dynamic programming algorithm. We note that
this fits well the context since it yields the near-optimal
solution. However, although near-optimal, this tactic has
high computational demands — as we focus on task al-
location, we consider efficient tactic development as an
interesting avenue of further investigation. An alternative
can use heuristics to approximate knapsack-like solutions.
The second tactic adopted in this strategy is based on a
random selection of tasks. Notice that even though the
overall strategy offers great coverage, these tactics do not
consider dependencies between tasks.

Dependencies Strategy. The second strategy aims at
creating more custom groups that take into account de-
pendencies between tasks. For this reason, we employ two
graph-theoretical algorithms as tactics, strongly connected
components and fan-out. The former finds the largest strongly
connected component into the application model and builds
a group selecting tasks from the component until reaches the
maximum available resources. In contrast, the latter selects
tasks from the biggest edge fan-out found in the DAG.

It is important to stress that these strategies are indicative
to participant nodes and are built to offer suitable node
preferences for a wide range of applications. However,
because a key driver of the approach is the collaborator’s
decision to contribute resources, the coordinator does not
have any control over what decision strategies may be
employed by participants. The above indicative strategies
aim to bootstrap choices for a collaborator, which then can
amend based on its internal resource sharing rules.

Each collaborator utilizes the strategies above to gener-
ate its task preferences within an advertised application. As
we observed, the coordinator then proceeds to calculate a
satisfiable mapping based on the technique of Sec. 4.1. Note
that the preferences of a participant for certain tasks might
be fully or partially satisfied, based on application-wide
objectives. Energy costs for collaborators can be adjusted by
selection of different strategies to capture the nodes’ prefer-
ences. We especially note that different strategies would be
interesting to develop in tandem with incentive mechanisms
— in essence, to encourage participants to consider more
tasks, something we identify as future work. Finally, the
actual tasks have to be deployed in nodes. In practice, this
entails downloading containers from a container repository.
Costs arising from this are application dependent; size of
containers comprising the application tasks and downlink
bandwidth are key such factors.

5 EVALUATION

To evaluate our technique and accompanying technical
framework, we consider two evaluation goals; applicability
and performance. For the former, we model four differ-
ent applications obtained from literature to be deployed
at the edge, while for the latter we follow a quantitative
approach to evaluate the performance of our technique on



IEEE TRANSACTIONS ON SERVICE COMPUTING

resource-constrained devices. To concretely support evalu-
ation, we realized a prototypical tool based on the CVC4
SMT solver [18] — implementation and technical details
can be found at [19] — which is deployed on a resource-
constrained device, a single -board computer featuring an
ARMvS 1.2GHz CPU, acting as the coordinator. After ap-
plicability aspects, we describe the experimental setup and
finally discuss the obtained results.

5.1 Applicability: loT Applications at the Edge

To investigate applicability, we model four applications,
usually deployed on devices incapable of executing an
entire application locally: (A1) an antivirus application, (A2)
a face recognition application, (A3) the public safety mo-
tivational example of Section 2, and (A4) a team-building
application. The first three applications are obtained from
the literature and represent realistic applications — all three
applications consists of 5 tasks and 5 edges [5] and have
a maximum SLA = 30. In contrast, we adopt the fourth
to demonstrate the framework’s capability to deploy more
complex applications, one that consists of 8 tasks and 10
edges with SLA = 50.

We consider that deployment may be intended for three
different scenarios — offloading, mapping, and job assign-
ment. Offloading refers to deployment of tasks of an appli-
cation to nearby edge nodes to ensure better functionality
and optimize e.g., energy consumption — such a practice
is usually employed for mobile applications. The second
scenario represents mapping of tasks permanently deployed
on multiple nodes found at a certain locale, most useful
in case of applications that do not feature mobile edge
nodes, such as a smart traffic lights application [13] or do
have mobile nodes but a self-adaptive technique ensures
correct functionality after changes in the network. Finally,
the third scenario considers applications that are instance
based, meaning that a deployment occurs only when a
request to do so is received. This captures utilization of
resources of nearby edge nodes only for a limited period
of time. Our technique is capable of deploying application
for all three scenarios, however, we consider that, due to
its nature, it will provide the most benefits in the context of
task offloading; we can enable a resource-constrained device
make decisions locally what tasks to offload and where,
without the need of a central entity. We select two mobile
applications (Al and A2), one that fits the second scenario
(A3) and one instance-based (A4), to be deployed on an edge
system comprised of five nodes.

Each task and node is characterized by a set of com-
putational resource requirements, i.e., a tuple (RAM, CPU,
HDD, {OTHER}), where OTHER represents a set of special
task requirements or special resources a node has, capturing
their functionality and capabilities. The tasks which require
no other specific resources (i.e., shown with @) can be
mapped on any node if there are enough available resources.
Furthermore, for every individual application model we
randomly distribute on participant nodes a set of avail-
able computational resources. When selecting the node’s
available resources, we consider multiple factors, i.e., (i)
the application’s size, (ii) the total number of participant
nodes, and (iii) the tasks’ resource requirements. Note that
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for evaluation purposes, when choosing the available re-
sources, we seek to create an environment that can host the
deployed applications — at the same time, we seek to have
limited available resources to challenge the framework. As
a result, for applications A1-A3 we select for each resource
a value between 5 to 10 units, while for application A4 we
choose between 10 to 20 units, as application A4 contains
more tasks. In addition, other resources required by the
application are deployed on different nodes. For illustration
purposes, we adopt a generalized "unit’ for resource quan-
tification — in practice this would be refined per application
(e.g., in MB/GB for RAM, GHz for CPU, etc.). Moreover,
we assign a communication latency between nodes chosen
randomly between 1 and 10 ms. For all application deploy-
ments, the coordinator is deployed on an ARMv8 R-Pi3 de-
vice featuring a 1.2GHz CPU and 1GB RAM, serving as the
edge node. In contrast, the participant nodes are simulated
on a machine with a single-core Intel i5 2.3GHz processor.
Application models, further details, and evaluation results
can be found in the online appendix [20].

Antivirus Application (A1). This application is a rep-
resentative mobile application, widely used by users on
their devices, that behaves like a software antivirus. The
application requires: a graphical user interface (GUI) to
interact with the user, i.e., task ¢y, computational tasks like
scan file and compare that represents the core functionality,
and a task that present the output. Furthermore, some tasks
may require special resources, e.g., task ¢y requires a set
of files to be scanned, and t5 requires a host node with
a display. In Figure 4, one can observe the deployment
strategy found, as well as the available resources of each
edge node and the resource requirements of each allocated
task. The successful mapping (indicated on Figure 4 with
the dotted edge nodes) is found in 434 ms with SLA = 23.

E4(9,8,8, filesy - - -, . E5(6.57,9)----, E3(7,5,9, display -,

2 , : o t1: 5 o t2: : ol :
10- aul . | Load_Library |+ ~:| Compare 1. " t4: Output | .
f (1,1, 1, files) : (1,1,1,@)' (1,1,1,2) ' ' (1,1,1,display):

.E2(6,8,9,2) ---
' —— task (requirements)
t3: - edge node (resources)
Scan_File
(2,2,1,2),

Fig. 4. Antivirus application and deployment (in overlay).

Facerecognizer Application (A2). This application is an
image processing application able to identify a face in an
image. Two tasks provide the interaction with the user, i.e.,
to that requires a set of images as input and provides the
application’s GUI and task t4 that presents the output on
display. In contrast, the remaining tasks require specialized
Al hardware such as a GPU or TPU. The requirements of
each task and the available resource of participant nodes
alongside the satisfiable solution found, is shown in Fig-
ure 5. In this casea deployment solution is found in 422 ms,
with SLA = 22.

Public Safety Application (A3). This application aids
authorities in video analysis in the field. All tasks require
special resources — task tg, represents the source of video
data, e.g.,, a CCTV camera, while task ¢; is capable of
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E5(9,5, 8, images) -, E4(6,6,9,A) ------ ) E1 9,6,8,2) ----, E3(5,8,9, display) - -

,E2 (15, 19, 12, {env, images, video, health})

t0: GUI
(1,1,1, images):

E2 (7,6, 5 Al)
—— task (requirements) . 13:
- edge node (resources) D. Detect Face
: (1, 4,1, A);

Fig. 5. Facerecognizer application and deployment (in overlay).

detecting motion and requires as input the raw video data
received from ty. Based on the output of t;, the next two
tasks, i.e., to and t3, detect and track objects — those utilize
on machine learning algorithms requiring specialized hard-
ware. Finally, t4 requires a user-facing node with a display to
present the generated results. Their resource requirements
and available resources are shown in Figure 6. A satisfiable
allocation is found in 407 ms with SLA = 17.

E3(8,8,8,video) - -, E5(6,6,7, TPU)- - -,

t0: Camera o MOt.Ion —l>
| Detection !
(Input data) . 3, 8,5, video!

E4(8,6,8, TPU)- - -,

t3: Obj.
Tracker
'_(7,4,3,TPU) |

—— task (requirements)
- edge node (resources)

Fig. 6. Public safety application and deployment (in overlay).

Team Building Application (A4). The application aims
to help companies finding the perfect team building lo-
cation based on an analysis of user personal data. Each
task resource requirements and the 5 collaborators available
resources are shown in Figure 7); task to represents the
starting task and symbolizes the need for different types
of data required by the next 4 tasks. The tasks that analyze
the stored data are: ¢;, which performs analysis of the em-
ployee’s stored health information, ¢; requiring video data
as input to perform motion detection, ¢3 requiring images
on which it performs object detection, and ¢4 which does an
analysis of the environment. Based on this information, t5
generates a list of possible locations on which ¢5 computes
the budget required. Finally, ¢7 represents the end task and
creates a report suggesting possible destinations as well
as an estimation of travel cost. Considering the defined
experimental setup, a solution is found in 510 ms with SLA
=31.

5.2 Performance: Experiments Setup and Results

To quantitatively evaluate our task allocation framework,
we consider as a performance metric the execution time
required to obtain a distribution of tasks to the col-
laborators. This amounts to the coordinator’s ability to
find a satisfiable solution at the edge, considering the
highly computationally-demanding solving component of
our technique. Furthermore, we perform an analysis of
the SMT encoding by examining the number of symbols
of each part of the encoding presented in Formula 5, ie.,

t: . 5
Find_Match £2: Init : LM Output | ;
/141A| 141@ . : (1,1, 1, display) |

.EZ 9, 6, 9, display} -,

t2:0b.  |: i t4:Resut |:
Detector * | generation |
(6,6.,2,TPU) | (1,1, 1, display)

E1 (14,17, 15, env). ,

t1: Health
Analvsis E3 (17, 12, 18, images)
L—(@, 5,1, health)* : : t7: Output
: bt 13: Obj. put |,
(1,2,3,9) .

T -] Detection |
105,68, 2, images);

t0: Input E1(14,17,15, env)- - - - - - - -

D: t4: Env. t5: Data

! Analysis Analysis o
X (1,4, 3, env) |-> (7,7,2,2)r ¢

16: Cost
Estimation

(3,4,1,9)
E5(19,11,15,video),  “----- oLl oiloooaoaooL D T T
t2: Motion
Detection —— task (requirements)
®,6,4 video.) - edge node (resources)

Fig. 7. Team building application and deployment (in overlay).

domainFacts, taskFacts, and prefConstraints. For this purpose,
we design an experimental setup of an application and an
edge computing setting.

For the application model, we adopt montage [21], a
real-world DAG workflow. The application is composed
of 24 tasks, each having allocated resource constraints in
the range of 1 to 10 units, and 50 edges. Furthermore, to
accurately evaluate performance and avoid discarding sat-
isfiable solutions due to randomness in node distribution of
resources and other limitations introduced by other factors
like SLA and required data, we set the SLA to a large
value and ignore data requirements of each task. The overall
objective of our experiment setup is to map the application
to an edge computing architecture in which we gradually
increase the available resources (i.e., by increasing the size
of the network). We randomly assign to each edge node a set
of available resources chosen in the range of 10 to 20 units.

We adopt the same test environment used in the appli-
cability scenario 5.1. We perform 500 tests for each newly
created edge architecture, on which we measure: (i) the
percent of successful mapping and exclusively at the edge
mapping for different number of participating nodes, (ii)
the time required by the coordinator to find a successful
mapping of tasks to different size group of participants, and
(iii) the number of symbols each part of the SMT encoding
requires. Our results are presented in Figures 8, 9 and 10. In
Figure 8 we observe that as the number of nodes increases,
the successful mapping rate improves. This behaviour is
similarly shown in Figure 9, where both the execution time
and the number of symbols required by F increase with
the number of participant nodes. Finally, in Figure 10, the
relation between the total number of symbols of F and each
individual components is presented.

5.3 Discussion

We have demonstrated that by using our framework, a
decentralized resource management in an edge setting can
be performed. Furthermore, we note that for all applications
considered (Section 5.1), a successful task allocation at the
edge (without resorting to cloud resources) is achieved in
under 510 ms, i.e., Al is determined in 434 ms, A2 in 422
ms, A3 in 407 ms, and A4 in 510 ms. This demonstrates
efficiency over different types of applications in under a
second, a duration suitable for three scenarios involving
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Fig. 9. Mapping time over number of participant nodes and formula size.

offloading, mapping and job assignment. Note that the time
it takes to deploy an application is negligible for the overall
application’s lifecycle, because this happens once before it
starts executing and not continuously, unless the network
circumstances change; moreover, a deployment time of 500
ms is small compared to the overhead of moving tasks as
containers.

Notice that our framework does not perform any opti-
mization, but yields a task allocation strategy that satisfies
the considered objectives. As a result, observe that the
obtained SLA is not optimized. For example, for Al, it is
possible to improve the SLA by mapping dependent tasks

20.38 20.86 2L.27

20
20 18.81 102

1711 18.04
15.82

In(# of SMT Symbols)

10

10

Nodes

M Domain Facts M Task Facts " Preferences Constraints

Fig. 10. Contribution in symbols of different problem components to the
overall formulae, over increasing node count.
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on the same node if there are available resources. In this
case, some tasks like ¢3 and ¢4 can be mapped on the
same node Fj3, yielding a lower SLA. However, the SMT-
based approach may find other solutions, in the case when
application constraints are relaxed (and if they exist).

In Figure 8, we have recorded the successful rate of our
framework to find an allocation of tasks at the edge with
or without the need for computational resources found in
the cloud. For each number of participants, we illustrate the
total number of satisfiable solutions found and the number
of solutions found using only edge resources. As one can
observe, the total number of the former is influenced by
the available resources shared between the participants.
However, the decision strategies used by the participants
have a bigger impact on the number of solutions fully
mapped at the edge. As a result, to fully utilize the available
resources found in an edge architecture, we must optimize
the strategies to ensure greater task coverage.

Figure 9 illustrates the impact that an increase in the
number of participant nodes has on the execution time
required by the coordinator to yield a task allocation. In
this case, we can observe that the growth of the number of
nodes influences the SMT formula size which ultimately has
an impact on the time required to find a solution. Besides
the number of nodes and application size, other factors that
influence the framework’s performance are the e2e latency
desired and the nodes’ resources, albeit on a lesser scale.
Moreover, since all nodes are considered reachable, their
connection density, a concern in certain edge settings, has
no impact on the framework’s performance (Section 3.1).
We note that with respect to previous work [9], the memory
requirements of the SMT formulae produced are reduced
— for instance, consider the reduction of a problem size of
20 nodes with respect to the SMT formula size, where a
decrease of 12.5% in the formula size is obtained. This in-
crease in efficiency grows with the number of participating
nodes (e.g., for 4 nodes we see a decrease of 6.67%, while
for 12 nodes a decrease of 12.12%). Memory is a significant
factor because resource-constrained devices typically have
limited amounts. The encoding used in this paper represents
scalability improvements over previous work [9].

We performed an analysis on the three parts of the en-
coding, i.e., domain facts, task facts, and preferences constraints
to better understand which has the biggest impact on the
overall SMT formula size, since their size increases with the
number of nodes in the network. In Figure 10 the total num-
ber of symbols required for each part is illustrated, on which
we apply the base e logarithmic function for presentation
purposes. To have a better understanding of the number
of symbols of each encoding, for the considered montage
graph application of 24 tasks and an edge architecture of 20
nodes, the number of symbols of each is the following; the
domain facts has a total number of 211K, the task facts has 8K
symbols, and preferences constraints has a total of 5K. Observe
that encoding the latency objective in the formula is highly
expensive (i.e., 90% of the total number of symbols) since the
generated encoding is additive for every task’s latency. To
properly capture e2e delay, the formula requires all possible
task mappings to nodes as well as their associated latency.
As a result, the number of nodes and the application size
have a greater impact compared to any other factor.
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The framework can support any microservice-based IoT
application that can be decomposed as a DAG. The first part
of the evaluation (Section 5.1) demonstrates applicability on
a diverse set of applications, intended to represent differ-
ent scenarios obtained from the literature like offloading,
mapping, and task assignment. These applications have dif-
ferent characteristics such as variable number of tasks and
communication links. Furthermore, to quantitatively assess
the effect of the major computational-demanding factors —
application’s size, node’s available resources, and number
of nodes — we considered a real-world workflow, intended
to stress the framework (Section 5.2). We believe this shows
that results are generalizable, even in large applications —
the extent of which is demonstrated on the time it takes
to find deployment strategies. As such, we believe that the
framework performance is acceptable for relevant problems
- considering that for the experiments performed the coor-
dinator resides on a single-board computer.

We acknowledge the high computational demands of
our proposed technique, but we note that it offers guaran-
tees — something demonstrated in the scenarios A1-A4 pre-
sented. Results show that the framework can successfully
deploy, in absence of cloud resources, realistic applications
with distributed resources at the edge of the network. Scal-
ing up to higher numbers of participants is hindered by the
sizable encoding of the e2e delay objective (Figure 10). If the
focus is on other objectives that scale linearly with the fan-
out degree of a service (such as bottleneck avoidance), the
overall performance will improve significantly. As a result,
we conclude that the proposed technique will perform best
in scenarios where only a slice of the entire network is
considered for an application deployment (e.g., a disaster
scenario or task offloading from a resource-constrained de-
vice) or an extra module is introduced that is capable of
creating a group of participants, selecting them from the
proximity of the coordinator node. Finally, we note that the
technique does not guarantee the best latency, only one that
is less than the latency requirement specified. However, the
deployment solution is guaranteed to be correct (by virtue
of SMT), and is obtained rather fast.

6 RELATED WORK

Resource management techniques have been sought by the
community focusing on different aspects of the problem.
Accordingly, we discuss related work from three main
perspectives; first, as resource offloading, next as resource
allocation, and finally, as resource auctioning.

6.1 Resource offloading

Recent novel directions in distributed systems have demon-
strated advanced resource management techniques to of-
fload parts of an application from resource-constrained de-
vices like smartphones, to nearby edge servers (mobile edge
computing (MEC) nodes). By offloading tasks, computa-
tional demanding applications can run on end-user devices.

A low-latency distributed computation offloading tech-
nique aiming at distributing tasks in a pervasive system is
proposed in [22]. By combining serverless and edge com-
puting, a fully distributed domain was created consisting
of three different entities: (i) clients who wish to offload
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tasks, (ii) dispatchers who are in charge of distributing the
incoming tasks to a group of computers, and (iii) computers
which provides the computational resources. The system is
divided into two main categories: an online phase where
the dispatcher decided the distribution of all incoming task
and an offline phase where important functions, like setup
of containers or dispatcher configuration are performed. An
offloading model based on a heuristic approach is presented
in [5], considering parameters like application runtime, bat-
tery lifetime, and user cost as its objectives. The offloading
technique is composed of three different components, i.e., an
application profiler which takes as input the running mobile
application and converts it to a DAG structure, monitoring
of the remote infrastructure status, and taking an offloading
decision based on the input received from the first two
components and the user preferences. As a result, a task
can be executed either locally or on an edge/cloud node.

6.2 Resource allocation

Besides the offloading area, resource allocation techniques
are adopted to use the available resources found on nearby
edge devices. With this purpose, a competitive-cooperative
game-theoretic resource allocation framework to deploy
latency-sensitive application at the edge is developed, en-
suring cooperation between nodes by offering incentives
based on their work [23]. In this case, edge devices are
considered to be rational actors that have no desire of
sharing their resources and collaborate with other nodes if
proper payoff for their services is not offered.

In [24], a three-level resource allocation technique for
edge computing is proposed. The first level optimizes the
distribution of data replicas on multiple devices to minimize
the execution of a task at the cost of increased data manage-
ment. Both, the number of replicas and the data allocation
is decided based on a context-aware replication technique
that accounts for data size, current fluctuation of the system,
the available storage, and application characteristics. Next,
the second level distributes the tasks based on different
scheduling strategies, while the third level monitors the task
deployment and adapts data placement if needed. A task
assignment technique for data shared MECs is presented
in [25]. The solution considers the distributed data found
at the edge of the network when tasks are deployed closer
to the end-user. To efficiently deploy the tasks, the authors
grouped them into two different categories: (i) holistic tasks
that cannot avoid raw data transmissions and (ii) divisible
tasks that can be processed in a distributed manner.

In [26] a cooperative fog platform ensuring a collabora-
tion between multiple static and mobile fog devices by using
a distributed communication model is described. Moreover,
to improve the service efficiency of IoT applications, an
allocation algorithm is used to select the host based on the
characteristics of the system. A similar approach of a map-
ping algorithm composed of two stages is proposed in [27].
First, the application is divided into multiple different tasks
annotated with location information; in the second stage
each task is deployed on an edge node based on its location.

6.3 Resource auctioning

With regards to resource auctioning techniques, in scien-
tific literature we can find several proposals that focus on
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offloading tasks to edge devices. In [28], an auction-based
mechanism to perform resource allocation to MECs and
compute the related price for each resource is proposed.
The main idea is to have mobile users compete for resources
available at the edge servers to execute IoT applications.
Once a user submits a request to the nearest edge server,
a pricing mechanism computes the price for that particular
resource both in the cloud and edge. Based on this, the user
can decide if the deployment of their application to the edge
benefits them taking into account the cost.

An auction-based solution where users bid for resources
and edge servers sell their own for a certain price is de-
scribed in [29]. For this purpose, a model of a two-sided
interaction between a MEC server which plays the role
of the seller and the bidders representing the IoT mobile
devices is developed. A double auction scheme is used to
efficiently map computational resources of a MEC server
to the needs of a mobile device by determining the match-
making between the bidders and sellers. Another auction
mechanism for determining the optimal content placement,
on mobile edge devices, based on user’s bids is presented
in [30], where a mechanism that can find true valuations
from the users and promote participation.

A reverse auction which considers partial fulfillment of
tasks, as well as attribute and price diversity, is proposed
in [31]. A framework where each task owner is in charge
of hosting his/her auction without the need of collecting
global information. The authors offer two different auc-
tion schemes, i.e., the cost-preferred auction that schedules
tasks according to users’ asking price and time scheduled-
preferred auction that considers their arrival time. A dis-
tributed auctioneer for resource allocations on distributed
systems is proposed in [32]. A set of distributed protocols
to be shared between multiple participants with the intent
to simulate a centralized auctioneer. The main motivation is
device trust and their operators’ true intentions. By doing
a decentralized auctioneer the problem of trust disappears
since all operators have a say in how the resources are
distributed; eliminating the need of different participant
nodes to get an unfair advantage. The solution considers
both theoretical and practical implications of a decentralized
auctioneer, by using game theoretical perspective as well as
limiting the communication overhead.

Overall, different service placement approaches adopt
different methods — from heuristic algorithms to ILP, DNN
and others. Both the objectives and edge settings of those
approaches differ (e.g., optimizing for latency, cost, or re-
source utilization). The setting that we treat are dynamic
edge systems as well as meeting nodes’ preferences and
providing guarantees. Specifically, our framework differs
from three perspectives; (1) we guarantee that if there is a
solution possible, it is always found, (2) we maintain device
preferences by enabling local decisions, and (3) we per-
form resource management in a decentralized manner, on
resource-constrained devices without requiring knowledge
about resources of participants.

7 CONCLUSION

Taking advantage of available resources closer to end-
devices in a service-oriented fashion calls for novel resource
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management techniques that comply with latency, consider-
ation of nodes’ preferences and decentralization demands
of contemporary IoT applications. We proposed a novel
decentralized resource management technique and accom-
panying technical framework for deployment of latency-
sensitive applications on the cloud-fog-edge continuum;
our application coordinator being able to reside on any
of the three layers. We specifically focused on deploying
applications in the absence of cloud resources, where the
coordinator is deployed on a resource-constrained device.
We demonstrated that our technique can efficiently utilize
available resources at the edge and provide guarantees —
if a solution that satisfies latency and task’s requirements
exists at the edge, it will be found and it will be correct.

Regarding future work, we plan to investigate decision
strategies that ensure better coverage with lower computa-
tional demands. Furthermore, we intend to incorporate an
incentive system to reward participant nodes for sharing
their resources, perhaps by enticing them to use strategies
particularly efficient to the collective. An extension of the
proposed technique may be desired to consider deployment
of service models with multiple input and output tasks
(i.e., where the invocation or execution path in the service
composition has multiple entry and exit points). In this case,
each individual execution path may have a certain e2e delay
constraint set, yielding a further constraint that task allo-
cation must consider. Similar to the notion of considering
resource preferences of edge nodes, security and privacy
mechanisms [33] can be further integrated [34]. Finally,
to account for dynamic behaviour at runtime, we aim to
incorporate task migration techniques.
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