
Scalable Multiple-View Analysis of Reactive Systems via
Bidirectional Model Transformations

Christos Tsigkanos

TU Wien

Vienna, Austria

Nianyu Li

Peking University

Beijing, China

Zhi Jin

Peking University

Beijing, China

Zhenjiang Hu

Peking University

Beijing, China

Carlo Ghezzi

Politecnico di Milano

Milano, Italy

ABSTRACT
Systematic model-driven design and early validation enable engi-

neers to verify that a reactive system does not violate its require-

ments before actually implementing it. Requirements may come

from multiple stakeholders, who are often concerned with di�erent

facets – design typically involves di�erent experts having di�erent

concerns and views of the system. Engineers start from a speci�ca-

tion which may be sourced from some domain model, while valida-

tion is often done on state-transition structures that support model

checking. Two computationally expensive steps may work against

scalability: transformation from speci�cation to state-transition

structures, and model checking. We propose a technique that makes

the former e�cient and also makes the resulting transition systems

small enough to be e�ciently veri�ed. The technique automatically

projects the speci�cation into submodels depending on a property

sought to be evaluated, which captures some stakeholder’s view-

point. The resulting reactive system submodel is then transformed

into a state-transition structure and veri�ed. The technique achieves

cone-of-in�uence reduction, by slicing at the speci�cation model

level. Submodels are analysis-equivalent to the corresponding full

model. If stakeholders propose a change to a submodel based on

their own view, changes are automatically propagated to the spec-

i�cation model and other views a�ected. Automated re�ection is

achieved thanks to bidirectional model transformations, ensuring

correctness. We cast our proposal in the context of graph-based

reactive systems whose dynamics is described by rewriting rules.

We demonstrate our view-based framework in practice on a case

study within cyber-physical systems.

ACM Reference Format:
Christos Tsigkanos, Nianyu Li, Zhi Jin, Zhenjiang Hu, and Carlo Ghezzi.

2020. Scalable Multiple-View Analysis of Reactive Systems via Bidirectional

Model Transformations. In 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE ’20), September 21–25, 2020, Australia.ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ASE 2020, 21 - 25 September, 2020, Melbourne, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Design complexity for a system is high because of the many di�er-

ent intertwined facets that need to be taken into account. Further-

more, di�erent viewpoints (or system aspects) typically need to be

accommodated [37]. Di�erent stakeholders have di�erent concerns,

and di�erent experts may be involved in the design of the system,

focusing on di�erent technical aspects. For example, a distributed

system may be comprised of di�erent software components con-

nected through networks – the arrangement of components in a

software architecture is one viewpoint, while the network they

form is another. The advisable way to dominate complexity is to

apply sound software engineering principles–namely separation of

concerns and abstraction–to system design and early validation.

We consider the case where requirements to be satis�ed by a

reactive system under design are speci�ed in terms of assertions

in a temporal logic and that the system model is encoded into a

formal graph-based modeling language. To support early design

validation, the behaviors that can emerge within the reactive sys-

tem need to be veri�ed against the requirements. This veri�cation

can be supported by model checking, which requires an interpreta-

tion of the reactive system speci�cation as a state machine. Model

checking does an exhaustive search of the state space for absence of

illegal behaviors [8]. However, like any exhaustive technique, such

state machine interpretation and its model checking may become

impractical as models become large and complex.

To address these di�culties, this paper investigates a technique

that leverages the di�erent properties expressing the di�erent con-

cerns of stakeholders to automatically project the speci�cation

model into submodels, each depending on the property under con-

sideration. Projections automatically generate submodels that are

equivalent to the full source model from the standpoint of the spe-

ci�c properties that need to be veri�ed. Projected models, however,

are generally smaller than the full source model, and therefore

veri�cation via model checking, which may be unfeasible for the

full reactive system model, may become feasible for the submodel.

For example, to reason about the deployment of components in a

software architecture, we only need to care about structure and con-

nectivity of the infrastructure on which the di�erent components

of an application is hosted, and not e.g., network aspects.

Once a submodel is derived, a designer who is concerned with

that speci�c view may analyze it and correct it if problems are

found. For example, to improve performance, a database expert

may decide that a cache should be placed in front of a database

within a virtual machine, re�ecting that in the deployment model.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Tsigkanos, et al.

In our proposal, we assure that changes applied to the submodel

are re�ected back automatically in the full model, and from there

propagated to other projections [29] that may also be a�ected and

hence would need to be re-validated. The full reactive system spec-

i�cation model and the various submodels for the di�erent views

are therefore automatically kept in sync, supporting separation of

concerns. Automated re�ection is achieved thanks to the use of

bidirectional model transformations [11]. In our example, we would

need to verify that adding the new database cache does not lead to

violation of other requirements (for example referring to database

network connectivity), which pertain to another view of the system

represented by a di�erent submodel.

We leverage results on model slicing [3]
1
and devise a practical

software engineering framework that can support multiple-view

analyses, keeping views automatically synchronized. The slicing

process [9, 19] is performed at the reactive system speci�cation

level, leveraging the types that appear in the speci�cation and in the

properties under consideration. Our technique achieves scalability

in analysis in two dimensions: (i) slicing is performed at the reactive

system speci�cation level, before the (expensive) generation of

the state-transition structure describing its evolution, and thus

(ii) model checking occurs in a considerably smaller transition

system. The latter achieves cone-of-in�uence reduction on the state-

transition structure submitted for model checking.

We consider systems that are formally modeled (static) graph-

based structures along with their possible (rule-based) dynamics,

yielding reactive behaviors. In particular, the speci�cation is in

terms of a complex static structure given in terms of a graph (which

may be sourced from some domain model), and reactive dynamism

is modeled by graph transformations. Interpretation of such speci-

�cations is costly; although state-of-the-art techniques and tools

(e.g., SPIN [21], NuSMV [7]) employ cone-of-in�uence reduction for

traditional reactive systems, the interpretation step in the expres-

sive, graph-based reactive systems we consider involves explicitly

constructing the state space, typically amounting to graph isomor-

phism on each step. Instead of slicing a state-transition structure

– which in our case is not available and must be constructed – we

work at the model speci�cation level [6, 28].

Our contributions lie within a technical framework integrating

fundamental techniques to scale-up automated analysis by building

upon the cone-of-in�uence intuition – that often only fractions of

a model are necessary for reasoning on speci�c behaviors. Thus

automatic projections can support veri�cation even in cases where

otherwise it would not be feasible for the full model. Speci�cally:

• We concretely support separation of concerns and abstrac-

tion by advocating multiple views tailored in an automated

way for analysis of speci�c requirements; those enjoy

• sound model synchronizations having two constituents: (i)

correctness of model projections, where projected submod-

els are su�cient for checking a given requirement, and (ii)

correctness of synchronizations, where models involved are

kept consistent under the “projection” relation. Finally,

• automated re�ection facilitiesmake use of bidirectional trans-

formations, whose application to slicing, multiple-view anal-

ysis and model checking was not investigated before.

1
Model slicing generalizes to models the program slicing technique introduced by [48].

Our modeling approach is based on bigraphs and Bigraphical

Reactive Systems (BRS [36]), a graph-based modeling formalism

proposed by R. Milner able to encompass other formalisms such

as process calculi and Petri nets. Our motivations for choosing

this formalism are (i) its generality, as bigraphs have seen appli-

cations on systems ranging from cloud to cyber-physical, (ii) its

well-de�ned semantics and hierarchical structure leading to ele-

gant algorithmic treatment, and (iii) its natural relation to Graph

Transformation Systems, rendering future practical adoption and

tool support easier. Following a model-driven approach, other

domain speci�c models can derive the BRS speci�cation models

we target. To provide concrete evidence of the proposed model-

based approach, we demonstrate that the goal of making analysis

scalable through model projections can be achieved in practice on

a characteristic case study within cyber-physical systems where

multiple-view analysis is paramount to the design process.

The rest of the paper is structured as follows. Sec. 2 provides nec-

essary background, while Sec. 3 gives an overview of the proposed

approach. Sec. 4 introduces a type-based approach to automatically

generate requirement views, and Sec. 5 describes model synchro-

nization. Sec. 6 provides an assessment over a case study. Related

work is considered in Sec. 7, and Sec. 8 concludes the paper.

2 BACKGROUND
In this section, we start with a simple scenario serving as a running

example throughout the paper. Subsequently, we succinctly illus-

trate how to model graph-based structure (Sec. 2.1) and dynamics

(Sec. 2.2), i.e., possible ways in which the system may change over

time through actions. Then, we show (Sec. 2.3) how the resulting

reactive system can be interpreted as a state machine, upon which

requirements may be veri�ed by model checking.

Running Example. Consider the casewhere a resource constrained
mobile robot patrols a spatial domain to locate intruders. The spa-

tial domain is divided into areas upon which a local edge server is
located, supporting robots to perform computationally-intensive

tasks (e.g., image recognition, to visually detect intruders) with-

out the latency that a cloud connection would incur. Computation

o�oading is performed on Virtual Machines (VMs), to which the

edge server is the host. As the robot moves within areas, a VM may

need to be migrated to the respective server located in another area.

To this end, network gateways may connect edge servers, through

which migration occurs. The ubiquitous system should ful�ll two

requirements: (RQ1) an edge server should not be idle, if there is

another one connected to it hosting 3 VMs (load balancing), and
(RQ2) if there exists an intruder in the system, the robot must keep

surveying areas “one”, “two” and “three” in sequence, one after the

other (in a sequenced patrolling [34] pattern).
Notice that the example describes a simple reactive system. A

model of the system can be constructed, which represents struc-

ture, entities and their relations within the scenario, as well as

dynamic evolution due to actions. Subsequently, interpretation as

a state-transition model and its veri�cation in the form of model

checking can be used to check if the requirements hold. However,

interpretation and veri�cation of large models may be impractical.

Moreover, multiple stakeholders (e.g., robotic experts, deployment

engineers) may have di�erent interests in the system, so separation

of concerns is highly desirable. Following such a principle implies



Multiple-View Analysis via BX ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

supporting analysis on each concern separately and abstracting

away details that are irrelevant.

2.1 Modeling with Bigraphs
Modeling systems within software engineering is certainly a wide

theme. Our formalism of choice is bigraphs [36], a graph-based

process meta-calculus that is able to capture widely di�erent sys-

tems, while featuring interesting properties. A bigraph consists of

two graphs. A place graph is a forest, a set of trees de�ned over

a set of nodes, while a link graph is a hypergraph over the same

set of nodes and a set of edges each linking an arbitrary number

of nodes. Connections of an edge with its nodes are called ports.
Place and link graphs are orthogonal, and edges between nodes

can cross locality boundaries. Nodes that appear in a bigraph are

typed
2
. What follows is an informal presentation of bigraphs as

used in the scope of this paper, recalling de�nitions in [36, 45].

P.Q Nestinд (P contains Q)

P | Q Juxtaposit ion of nodes

−i Site numbered i

Kw Node with type K havinд por ts w

W ‖ R Juxtaposit ion of biдraphs

(1a)

(1b)

(1c)

(1d)

(1e)

Bigraphs can be described through a rigorous graphical representa-

tion as well as equivalent algebraic expressions (Formulae 1a-1e). P,
Q , and K are names that de�ne a node’s type. Nodes can be struc-

tured hierarchically; the containment relationship is expressed in

Formula 1a and is graphically described by nesting. Bigraphs may

be placed at the same hierarchical structure level, as shown in For-

mula 1b. Additionally, bigraphs can contain sites (Formula 1c) that

can be used to denote placeholders, i.e., the presence of unspeci�ed

nodes, graphically represented as shaded boxes. Absence of a site

signi�es no unspeci�ed nodes in that part of the hierarchy. Each

node type (“control”) can be associated with a number of named

ports. In Formula 1d the node identi�ed by type K has port names

w ; ports are graphically represented as black bullets. Bigraphs can

be contained in roots that delimit di�erent hierarchical structures,

thus being juxtaposed. In Formula 1eW and R are di�erent roots.

An instance of the example system is illustrated in Fig. 1, where

entities such as robots and servers are within three areas. Notice

how areas are linked to names identifying them, and links of servers

to the network gateway traverse the hierarchies (i.e., the nesting of

nodes). Sites denote unspeci�ed nodes. Using the algebraic notation,

the bigraph of Fig. 1 can be represented as in Formula 2.

Area1 .(Robot | Serverlnk .(VM |VM)) | Networklnk
| Area2 .(Intruder | Serverlnk .VM | −1) | Area3 .(Intruder | Serverlnk | −0)

(2)

Formally, a bigraph arises from two superimposed relations. Let

VB be a set of nodes and K the set of types of nodes. Let ctrlB :

VB → K be a typing function, called type map. A place graph is

a tuple BP = (VB , ctrlB ,prntB ,K) where prntB : VB → VB is an

acyclic parent mapping modeling nesting. A link graph is a tuple

BL = (VB ,EB , ctrlB , linkB ,K) where EB is a �nite set of edges and

linkB : EB → 2
VB

is a link mapping assigning each edge the set of

nodes which are connected by that edge. Then, a bigraph B consists

of BP and BL : B = (VB ,EB , ctrlB ,prntB , linkB ,K). Note that for B
of Formula 2, K = {Robot,VM,Area...}.

2
Types are called controls in bigraphical terminology.

Area
Server

VMRobot

Network

Server

VM

Intruder
0

AreaArea

1
2

3 1

0

Server

VM
lnk

Intruder

Figure 1: Bigraphical model of a ubiquitous system.

2.2 Modeling Dynamics with BRS
A Bigraphical Reactive System (BRS) [36] captures dynamic be-

havior. A BRS describes possible ways with which a bigraphical

structure can evolve through application of transformation rules

–called reaction rules– which selectively rewrite parts of a bigraph.

Reaction rules have the general form of R → R′
, where the left-

hand-side R (the redex) represents a pattern to be found in a bigraph,
and a right-hand-side R′

(the reactum) will replace a matched por-

tion upon application of the reaction. R and R′
are also bigraphs.

Replacement of a subgraph matching a reaction rule redex with

the subgraph de�ned by the reactum occurs in a fashion similar to

graph rewriting [10], in a procedure called bigraph matching [36].

Rewriting procedures are computationally costly, as they are equiv-

alent to graph isomorphism.

Utilizing reaction rules, dynamics of the example scenario can

be modeled. The possible changes entail mobile robots changing

areas (move), VMs migrating from connected servers (migrate), and
the robot successfully capturing an intruder (capture), modeled as

follows (a, b, c are variables ranging over named ports):

(move) Areaa .(Robot |−0) | Areab .(−1) → Areaa .(−0) | Areab .(Robot | −1)

(migrate) Serverlnk .(VM | −0)) ‖ Networklnk ‖ Serverlnk .(−1))

→ Serverlnk .(−0)) ‖ Networklnk ‖ Serverlnk .(VMlnk |−1))

(capture) Areaa .(Robot | Intruder | −0) → Areaa .(Robot | −0)

2.3 Analysis of Reactive Behaviors
Given an initial con�guration speci�ed by a bigraph and a set of

reaction rules, new con�gurations may be generated by repeatedly

applying reactions, and possible evolutions can be described by a

state-transition structure [45]. This is a (doubly) Labelled Transition
System [8] (dLTS) L, de�ned as a tuple 〈S, i,A,AP ,→,L〉, where:

• S is a set of states describing con�gurations;

• i ∈ S is the initial state;

• A is a set of transition labels;

• AP is a set of atomic propositions;

• →⊆ S ×A × S is a 3-adic relation of labelled transitions. If

p,q ∈ S and α ∈ A, (p,α ,q) ∈→ is written as p
α
→ q.

• L : S → 2
AP

is a function that labels each state with the set

of propositions that are true in that state.

A BRS speci�cation can be translated into an equivalent dLTS. In-

tuitively, given an initial con�guration and a set of reaction rules, a

dLTS can be generated by mapping bigraphical con�gurations onto

states. The set of of propositionsAP ’ that label a state (p ∈ S) can be

systematically generated by declaratively encoding the correspond-

ing bigraph con�guration of the state. Transitions correspond to



ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Tsigkanos, et al.

Area1.(Robot|-2)

Area1.(Serverlnk.(VM|VM)|Robot)
Area2.(Intruder|Serverlnk.VM|-1)
Area3.(Serverlnk|Intruder|-0) …

s0 s1 s2

✓ ×Area2.(Robot|-2) ✓ Area1.(Robot|-2)

movemove

Area1.(Serverlnk.(VM|VM))
Area2.(Robot|Intruder|-1) 
Area3.(Serverlnk|Intruder|-0) 

Area1.(Serverlnk.(VM|VM)|Robot)
Area2.(Intruder|Serverlnk.VM|-1)
Area3.(Serverlnk|Intruder|-0) …

... ... ...

Figure 2: Evaluation of a property on a fragment of L.

applications of reaction rules that lead to new bigraphical con�gura-

tions and their labels record actions modeled by rules. An execution

fragment ρ ofL is a (possibly in�nite) alternating sequence of states

si ∈ S and transition labels αi ∈ A, written as:

ρ = s0
α1

→ s1
α2

→ ... sn−1
αn
→ sn ...

such that si
αi+1
→ si+1 for all i ≥ 0.

Behavior of the system over time (i.e., execution fragments ρ) can
be reasoned upon with a temporal logic. We adopt Linear Temporal

Logic [8] without the next operator (LTLx [24]), de�ned as follows:

ϕ ::= true | α | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ .

Propositions of the logic are bigraphs, interpreted over states of

L. Such bigraphs are termed parametric patterns, since sites can
be used to reason about unspeci�ed nodes, and variables (e.g., a)
can match port names – for instance, Areaa.(−0) would match

all areas of the model of Fig. 1. The properties modeled by LTLx
express behavioral constraints and are interpreted over execution

fragments of L. Intuitively, the formula ϕ1 U ϕ2 expresses that ϕ1
is true until ϕ2 becomes true; we can derive additional ones such

as �ϕ = true U ϕ ("eventually") and �ϕ = ¬ � ¬ϕ ("always"). Then,

requirements RQ1 and RQ2 of the running example can be formally

speci�ed by Formulae 4b and 4a:

RQ1: � ¬(Serverlnk ‖ Networklnk ‖ Serverlnk .(VM | VM | VM))

RQ2: �(Intruder → �(�(Area1 .(Robot | −1) ∧

∧ � (Area2 .(Robot | −2)) ∧ �(Area3 .(Robot | −3)))))

(4a)

(4b)

LTLx properties over bigraphical propositions (as patterns) as

previously de�ned may be readily checked upon dLTS L. For an

execution fragment of L and an LTLx property, evaluation of the

property entails i) �nding truth values of bigraphical propositions

on states and subsequently ii) verifying the property’s temporal

component over the sequence of states in the fragment. To evaluate

bigraphical patterns on states, matching [36] is used, while LTLx
properties are evaluated using established veri�cation methods [8].

The restriction to LTLx is a known strategy [14, 30] to enable

veri�cation optimization techniques without signi�cantly a�ecting

expressiveness of the language for practical considerations [3].

Fig. 2 shows an execution fragment of L. Bigraphical patterns

are evaluated in every state, while temporal properties are evalu-

ated over the sequence; in states s0 and s1, patterns (shown above)

Area1.(Robot | −0) andArea2.(Robot | −0) are respectively true (and

the property holds true); in s1, the robot moves back to Area 1, ren-

dering the patrolling property RQ2 false.

3 VIEW-BASED REASONING FRAMEWORK
Given a reactive system speci�cation comprising of an initial con-

�guration and a set of rewriting rules, analysis in the form of model

checking can be performed to check that possible behaviors do not

violate the stated requirements. Traditional analysis (shown in the

 R2

...

Analysis

P

Properties

Property

Analysis

Dynamics 
Subset

Property Dynamics 
Subset

...

R

Analysis

Dynamics

Source Model

View Model

Initial Configuration

View
Configuration

View
Configuration

View Model

Synchronization

Synchronization

 P2

 R1 P1

Figure 3: Framework for Multiple-View Reasoning.

lower part of Fig. 3) would entail considering the entire model and

set of rules, generating a state-transition structure by exploring

application of all rules, and �nally performing model checking for

each property encoding a di�erent requirement. The cornerstone

of our approach, shown in Fig. 3, is that for each property, subsets

of both the initial con�guration and the set of rules are taken into

account instead. This follows the spirit of slicing techniques as

applicable to models (i.e., not programs), where the slicing criterion

is a temporal logic formula (i.e., and not program variables).

The bene�ts of the proposed approach are twofold: (i) slicing is

performed at the system speci�cation level [4, 18], before the (com-

putationally expensive) generation of the state-transition structure

describing its evolution, and thus (ii) the size of the model submitted

formodel checking is reduced and tailored to formal analysis of each

requirement. The result is known as achieving cone-of-in�uence

reduction, which in this case has two dimensions. First, the size
of each state can be reduced. Recall that each state is modeled by

a set of propositions, and in our case propositions declaratively

specify all details of any given bigraphical con�guration. Our slic-

ing approach automatically prunes all details that do not a�ect the

requirement under consideration. Second, the number of transitions
exiting each state (fan-out) can also be reduced.

The proposed approach not only supports e�ective mechanical

veri�cation but is also bene�cial to designers in their reasoning

about the current system. By projecting the full model into a more

concise one which is equivalent with respect to satisfaction of a

given requirement, it supports separation of concerns and abstrac-

tion. It helps focusing on each concern separately and automatically

factoring away details that are irrelevant to a given requirement.

For example, the robotic expert of the example system (Sec. 2) can

focus her analysis on robotic mission aspects that a�ect the re-

spective requirement, while the expert on load balancing can focus

on others (in this case, VM migration). Such system concerns are

captured in di�erent analyzable properties as well as appropriate

subsets of the model and dynamics (upper part of Fig. 3).



Multiple-View Analysis via BX ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

Finally, the technique is rooted into the theory of bidirectional
transformations, which guarantees synchronization between mod-

els, consistency, and well-behavedness. As illustrated in Fig. 3, in

case of change in one of the views, changes are automatically prop-

agated both to the full model and other views, triggering analysis

if required. For our example scenario, if e.g., the robotic expert

changes the relevant submodel due to veri�cation results of re-

quirement RQ2, analysis can be triggered again on the submodel

needed to check RQ1 as well.

4 PROPERTY-DRIVEN VIEW GENERATION
Let us suppose that a reactive system speci�cation model is given by

providing a bigraph describing an initial con�guration (e.g., Fig. 1)

and a set of reaction rules describing dynamics (as per Sec. 2.2). This

section describes how a view model can be generated automatically,

given a property. The approach is requirement-driven and generates

a view model, which is a projection of the full model. The projected

model comprises an initial con�guration that is a subgraph of the

original, as well as a subset of the original rules. The description is

illustrated by referring to the running example. We �rst introduce

an algorithm that generates a view model for a given property

(Sec. 4.1). Subsequently, Sec. 4.2 outlines the proof of correctness

based on previous results achieved within model slicing.

4.1 Views through Type-based Transformation
The algorithm for view model generation has as input a full model

M – consisting of a bigraphC and a setR of reaction rules describing

dynamics – as well as an LTLx property P specifying a require-

ment. The output is a projection of the full model into a submodel

comprising (i) a subgraph C ′
of C and (ii) a subset R′

of R such

that satisfaction of P on the full model can be proved equivalently

by checking the satisfaction of P on the view model. We de�ne a

model transformation where the source model is the full model and

the target model is the view model. The proposed transformation is

embedded into an implementation that supports bidirectional model
transformations, as discussed in Sec. 5.

A model that contains exactly what is relevant to check satis-

faction of a requirement and is minimal (an optimal model) could

be carefully hand-crafted in many cases. However, manual con-

struction is non-trivial and prone to human error. Instead, we aim

for an automatic technique to generate model views per require-

ment, that are provably equivalent with respect to analysis of the

requirement on the source model. In the running example, intu-

itively one can observe that veri�cation of requirement RQ2 does
not require considering VMs: including or excluding the migrate

rule in the dynamic analysis does not a�ect satisfaction or viola-

tion of that requirement. The presented algorithm utilizes types to

generate views, by exploiting the correspondence between types

appearing in requirements, initial con�guration, and dynamics. The

algorithm does not guarantee generation of a minimal view model;

more on this point is discussed in Sec. 8. Recall that in a bigraphical

model, di�erent kinds of entities are re�ected in types (controls) of
the bigraphical representation. A requirement may concern enti-

ties having only certain types; consider Formula 4b, which only

predicates about Area and Robot and Intruder node types. Thus,
our approach to view generation builds on the basic intuition of

non-inclusion of node types that are not relevant to a requirement.

Algorithm 1 Computing Types and Rules for a View Model.

Input:
P – Bigraphical temporal property

R – Set of reaction rules

Output:
PropTypes – Set of types needed for P
RP – Set of rules needed for P

1: PropTypes ⇐ ∅ ; RP ⇐ ∅

2: for all p ∈ prop(P ) do
3: PropTypes ⇐ PropTypes ∪ k(p)
4: end for
5: repeat
6: PropTypes′ ⇐ PropTypes
7: for all r ∈ R do
8: if k(rhs(r )) ∩ PropTypes , ∅ then
9: PropTypes ⇐ PropTypes ∪ k(lhs(r ))
10: RP ⇐ { r } ∪ RP
11: end if
12: end for
13: until PropTypes′ == PropTypes

Algorithm 1 computes the set of types PropTypes needed to eval-
uate a property P , given a set of reaction rules R. It also computes

a subset RP of R, which includes the reaction rules we need to con-

sider to evaluate property P . The algorithm uses two help functions,

k and prop. Function kmaps a given bigraph into the set of types of

its nodes. Recall that a temporal property has bigraphical patterns

as propositions; function prop maps a given property into all bi-

graphs found as propositions in the property (i.e., discarding modal

temporal operators). The algorithm iteratively computes the set of

types needed for the evaluation of the property, by considering the

left-hand-sides and right-hand-sides of reaction rules. The result

is a subset of types that can be used to reduce the source model.

In addition, the algorithm produces a subset of rules relevant to

analysis of the property.

The algorithm starts by initializing PropTypes with all node

types appearing in bigraphical propositions of the property (lines 2-

3). For the property specifying RQ1, the algorithmwill include types

{Server,Network,VM}. Rules need to be also taken into account

since sequences representing change of truth values of proposi-

tions might a�ect satisfaction or violation of bigraphical propo-

sitions within P . To this end, every rule r in the set of reaction

rules R needs to be checked whether it is related to P . Speci�-
cally, while iterating through reaction rules (line 6), if the right-

hand-side of a rule has types in common with PropTypes (line 9),
the types appearing in the left-hand-side of the rule are also in-

cluded in PropTypes (line 10). For example, for the rule migrate,
k(rhs(migrate)) ∩ PropTypes = {Server,Network,VM} and k(lhs(
migrate)) = {Server, Network,VM}; thus, no type will be addition-

ally included to PropTypes as they have already been there. The

algorithm continues to iterate until reaching a �xed point, i.e., the

set PropTypes does not change (line 12).
To generate a view model MP =< CP ,RP > from a model

M =< C,R >, Algorithm 1 is used to produce RP and the set

of types PropTypes needed for evaluation of P . The latter is then

used to generate a projected con�guration CP by pruning the con-

�guration C as described in Algorithm 2. We take advantage of the

fact that con�gurations are modeled as bigraphs, whose nodes are



ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Tsigkanos, et al.

Algorithm 2 Generating a View Model.

pruneNode : (N, PropTypes) → N′

N , N ′
are nodes of the form Q .(NL)

where NL is a list of nodes with the recursive form N | NL
1: NL′ ⇐ pruneNodeList(NL, PropTypes)
2: if k (Q ) ∩ PropTypes ≡ ∅ and NL′ is ∅ then
3: N ′ ⇐ null
4: else
5: N ′ ⇐ Q .(NL′)
6: end if

pruneNodeList : (NL, PropTypes) → NL′

1: if NL , ∅ and in the form of Nhead | NLtail then
2: N ′

head ⇐ pruneNode(Nhead ,PropTypes)
3: NL′ ⇐ N ′

head | pruneNodeList(NLtail, PropTypes)
4: end if

arranged hierarchically (the place graph, Sec. 2). For each hierarchi-

cal layer, there might be several nodes (e.g., di�erent Areas) which
are considered as a list. The objective of pruneNode is to prune a

node, while pruneNodeList handles the list of nodes in order. In

pruneNode, the function pruneNodeList is invoked �rst to handle

nodes contained in that node (e.g., Robot and Server are contained
in an Area). The node shall be deleted if the control of that node is

not found in PropTypes and none of the nodes contained in it does

(line 2, i.e., NL′ is null). Generation of the view con�guration needs

to ensure that: i) all nodes of the source con�guration that have

types in PropTypes are included in the produced con�guration, and

ii) all their ascendants in the tree structure are also included, to

ensure that structure is preserved. Sites are treated as having a

special type, and are always included in the produced con�guration

– since they are placeholders for unspeci�ed nodes. Fig. 4 presents

the view models (initial con�guration and set of rules) produced

for requirements RQ1 and RQ2.

4.2 Correctness of Model Projections
Projection of a reactive system source model into a view model for

a given property P should yield a submodel equivalent to the full

model as far as property P is concerned. This section provides the

outline of a formal proof of this equivalence, leveraging theoretical

results in model slicing achieved in the past [3, 24, 35].

A view model produced by the method described in Sec. 4.1

satis�es P if and only if the source model satis�es P as well. Since

P is a temporal property, the equivalence has to be shown across

execution fragments. The proof outline leverages insensitiveness

to stutter within temporal logic; this means that a property can

not distinguish between fragments that di�er only by stuttering,

i.e., �nite repetition of similar states. Insensitiveness to stutter is

a prerequisite for widely used techniques in software engineering

such as partial order reduction [41] and model slicing [3]. Recall

that property speci�cation occurs within LTLx , characterized by

absence of the next-time LTL operator. The next operator is sensi-

tive to �nite stuttering, and a view projection essentially works by

projecting a behavior and collapsing sequences of stuttered states.

Any LTLx formula describes a stutter-invariant property [42].

Given a modelM consisting of a bigraph C describing an initial

con�guration, a set of reaction rules R describing dynamics and

a property P , a view model MP = < CP ,RP >, where RP ⊆ R, is

Area
Server

VM

Network

Server

VM

0

Area
Area

1
2

3
1

Server

VM
lnk

0

(a) < CP1, {miдrate } >.

Area

Robot Intruder
0

AreaArea

1
2

3
1

Intruder

0

(b) < CP2, {move, capture } >.

Figure 4: View models generated for RQ1 (a) and RQ2 (b).
Note the absence of Robot in CP1, and of VMs in CP2.

produced. Initially we introduce the concept of a canonical form
of execution fragments, then we show that there is a bisimulation
relation between theM ’s execution fragments andMP ’s execution

fragments. The proof outline consists of three steps. First, we show

that any execution fragment a�ecting P obtained from the full

model M has an equivalent canonical execution fragment where

transition labels only belong to RP . We call these fragments canon-
ical because they are minimal with respect to P . In our context,

equivalent signi�es that property P either holds or does not hold for

both execution fragments [3]. Second, we show that for each canon-

ical execution fragment obtained from the full modelM there is an

execution fragment in the view modelMP which is P-equivalent.
Third, we show that for each execution fragment obtained from

the submodelMP there exists a canonical form fragment obtained

from < C,R > which is equivalent.

Canonical fragment equivalence in the full model. Consider the
following fragment obtained from the full model M = < C,R >,
which captures application of rules αi ∈ A from the initial state s0:

s0
α1

→ s1
α2

→ ... sn−1
αn
→ sn ... (5)

The basic intuition behind the canonical form execution fragment

is that if α j ∈ R \ RP , α j does not modify any part of the bigraph of

state sj that will a�ect the evaluation of the property. An execution

fragment obtained from < C,R > may contain labels correspond-

ing to rules from both RP and R \ RP intermixed. To obtain the

corresponding canonical form fragment, any sub-sequences of tran-

sitions with labels in R \ RP can be dropped. For example, consider

the case where in execution fragment (5), aj ∈ RP for all 1 ≤ j < i
and j ≥ i+k , and aj ∈ R\RP for all i ≤ j < i+k . The corresponding
canonical form fragment is:

s0
α1 ...αi−1
−−−−−−−−→ si

αi+k ...αn
−−−−−−−−→ sn ... (6)

Recall that rules in R \ RP do not a�ect satisfaction of P . For any
execution fragment, one (and only one) canonical form exists. It can

be easily shown that the canonical fragment is indeed an execution

fragment of the full model.

Source-View fragment equivalence. As we observed, given any

execution fragment of M , we can produce a canonical execution



Multiple-View Analysis via BX ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

fragment where all transitions are labeled with rules in RP :

s0
α1

→ s1...
αn
→ sn ... (7)

For the canonical execution fragment (7), by applying the pro-

cedure described in Sec. 4.1 on bigraphs that label states s0, s1...sn
to eliminate from the con�gurations all nodes whose types do not

a�ect property P , we obtain the following execution fragment:

sP0
α1

→ sP1 ...
αn
→ sPn ... (8)

where the atomic proposition labeling state sP0 , is a bigraph CP
and for all i ≥ 1, αi ∈ RP and the atomic proposition labeling state

sPi is a bigraph obtained from the one labeling sPi−1 through the

application of the rule αi . Fragment (8) is an execution fragment of

MP and is equivalent to fragment (7). Thus, for each execution frag-

ment obtained from the full model there is an execution fragment

in the view model which is equivalent with respect to property P .
Canonical fragment equivalence in the view model. Consider any

execution fragment obtained fromMP = < CP ,RP >, for example

fragment (8). If we apply the same sequence of transitions αi for
all i ≥ 1 to an initial state labeled by C , we obtain a canonical

execution fragment of M that is equivalent to fragment (8).

5 MODEL SYNCHRONIZATION
We have shown that a view model can be generated from a source

model according to a speci�c requirement. However, a classic prob-

lem in this view-based approach is how to re�ect changes from the

view to the source model. If an update is made to the view model

after veri�cation (e.g., to counteract a requirement violation found),

we should be able to re�ect it to the source model, and from there

to other view models that might also be a�ected. In this section, we

show how to solve this problem by designing and implementing a

bidirectional transformation (BX) for synchronizing the source and

the view models to correctly propagate changes between them.

Without loss of generality, the following description only dis-

cusses how changes in view con�gurations may a�ect model syn-

chronizations (and vice versa). Changes to dynamics can be handled

similarly. Precisely, we assume the set PropTypes for a view not to

change, and hence also the set of dynamic rules. Thus, whenever

we use the term model in this section, it stands for only the static

part (i.e., the bigraphical con�guration).

5.1 A BX Algorithm
Bidirectional transformation (BX) [11, 17] is a useful mechanism

for data synchronization, which will be used for synchronization of

source and view models. A BX consists of a pair of transformations

дet and put . The forward transformation дet(s) is used to produce

a target view v from a source s , while the putback transformation

put(s,v) is used to re�ect updates on the view v to the source s .
These two transformations should be well-behaved in the sense that

they satisfy the following round-tripping laws:

put(s,дet(s)) = s GetPut

дet(put(s,v)) = v PutGet

The GetPut property requires that no change of the view shall be

re�ected as no change of the source, while the PutGet property

requires all changes in the view to be completely re�ected to the

Server

VMRobot

Area

2

1

source

get

put

PropTypes
VM

Server

Server

VM

Area

2

1

view

Server
Area

2

1

migrate

view'

Server

Robot

Area

2

1

source'

Figure 5: Type-based Bidirectional Model Transformation.

Algorithm 3 Updating a View Model.

updateNode : (Ns, Nv, PropTypes) → N′
s

Ns , Nv , N ′
s are nodes of the form Q .(NL).

1: Q ′
s ⇐ update attributes of Qs with Qv

2: NL′s ⇐ updateNodeList(NLs , NLv , PropTypes)

updateNodeList : (NLs, NLv, PropTypes) → NL′s
NLs , NLv , NLs′ are lists of nodes of the recursive form N | NL.
1: if both NLs and NLv are ∅ then
2: End Update

3: else if match Nshead with Nvhead successfully then
4: Nshead

′ ⇐ updateNode(Nshead , Nvhead , PropTypes)
5: else if k(Nshead ) ∩ PropTypes ≡ ∅ then
6: Nshead

′ ⇐ Nshead
7: else if k(Nshead ) ∩ PropTypes , ∅ then
8: Nshead

′ ⇐ delete node (contained in) Nshead in PropTypes
9: else if NLs is ∅ then
10: NLs′ ⇐ NLv
11: else
12: raise exception(view NLv is illegal)
13: end if
14: NLstail

′ ⇐ updateNodeList(NLstail , NLvtail , PropTypes)

source so that the changed view can be computed again by applying

the forward transformation to the updated source.

To use BX for synchronization, we need to develop a pair of

transformations between source and view models. The forward

transformation дet is straightforward, which is the view generation

function (Sec. 4.1) when a set of types PropTypes is given:

дet(s) = pruneNode(s, propTypes).

What is not so obvious, is how to de�ne the corresponding put that
can be paired with get to form a BX satisfying the GetPut and

PutGet properties. Before de�ning put, let us consider a concrete
example to see what this BX should be. As shown in Fig. 5 for the

running example and the load balancing requirement RQ1, the get
produces the view model with the types of VM and Server. When

the view is changed to view’ (VM is migrated), we hope to use put to
propagate this change back to source, yielding the modi�ed source’
(VM moves away while the rest of the the model remains the same).

Since our get is a projection, its corresponding put should be an

embedding of the view elements into the source model. To de�ne

put, we exploit the hierarchical tree structures of bigraphs echoing
the previous view generation transformation strategy, and use the

view to update the source layer by layer; put is de�ned by:



ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Tsigkanos, et al.

put (s, v) = updateNode(s, v, PropTypes),

where updateNode, informally de�ned by Algorithm 3, replaces

the attributes (i.e., ports) of the source with the information in

the view, and then invokes function updateNodeList to handle

nodes contained in the source node. Function updateNodeList
deals with the situation where both the source and view are a list

of nodes. The simplest strategy for updating a list is position-based

alignment, which matches the source and view elements by their

positions in the lists. There are 6 cases: 1) both source and view are

empty and we reach the end of execution; 2) the �rst node of the

source can be matched with the �rst of the view (e.g., Server in the

source can be matched with Server in the view), and updateNode is
called to update this node; 3) controls in the �rst node (including all

nodes contained in it) of the source are not found in PropTypes (i.e.,
no information shall be extracted to the view), in which case this

element of the source will remain the same; 4) some controls in the

�rst element belong to PropTypes , then this node and its containing
ones with controls found in PropTypes are deleted; 5) the source is
empty but the view is not (i.e., the source list has fewer elements);

the new source nodes have to be created; 6) otherwise the view is

not legal, and the computation fails to guarantee well-behavedness.

Later, updateNodeList will be invoked recursively to manage the

rest of the source and view lists. This put update strategy can be

paired with the get de�ned in Sec. 4.1 to form a well-behaved BX,

though the formal proof is omitted in this paper.

5.2 Implementing BX using BiGUL
The transformations get and put presented in Sec. 5.1 could be

manually implemented. Although this solution provides the pro-

grammer with full control in two directions and can be realized

using standard programming languages, maintenance e�ort is re-

quired to keep consistency between get and put if one of them

is changed; even a small modi�cation to one of the transforma-

tions would require rede�nition of the other. Moreover, the pair of

transformations should be proven to be correct and well-behaved.

To this end, we adopt BiGUL [25], a putback-based bidirectional

programming language, where one is only required to implement

the put transformation instead of both get and put. This is because
get is uniquely determined by put based on well-behavedness [22].

In BiGUL, once a put transformation is given, the corresponding get
is automatically derived.Wewill not dive into a detailed explanation

of put, as its semantics are illustrated in Algorithm 3. Interestingly,

from that put algorithm, BiGUL can automatically derive the get,
with the same semantics as Algorithm 2. The interested reader is

referred to [27] for the underlying mechanism of BiGUL, and to the

online appendix for the implementation [1].

Use of Synchronization. Synchronization between views is useful

for model maintenance purposes; recall the motivational example.

Assume that the cloud expert decides to improve load balancing by

dividing the available area into 4 areas, placing an edge server in

each to increase system capacity. To this end, she changes the cloud

view and proceeds to verify RQ1. The source and the robot view

are updated automatically, and veri�cation can be performed for

RQ2 as well – notice that in this case, the robot view has changed

as another area has appeared. Observe that RQ2 can be violated if

the sequenced patrolling behaviour is not maintained.

6 EVALUATION
To provide tool support for our multiple-view analysis framework,

we realized a prototypical view generation and transformation tool

based on BiGUL [26], which is freely available [1]. Thereupon, we

demonstrate the framework in practice over a characteristic case

sourced from the domain of cyber-physical systems; experimental

setup and results obtained are subsequently presented. We high-

light a typical design scenario where multiple-view analysis and

synchronization through bidirectional transformation is paramount

to the design process and conclude with a discussion.

6.1 Multiple-Views in a Smart City Design
The prevalence of sensors, networks and devices has led to the

emergence of smart urban environments. We consider two gener-

alized cases which can be concretized for various scenarios; those

concern di�erent requirements but their analysis is based on the

same model, obtained from a domain model of a city. Typically

those may be analyzed separately by di�erent stakeholders; how-

ever –as will later be illustrated– due to changes within a typical

design work�ow, a need of supporting synchronization among mul-

tiple views arises. We note that are not debating the underlying

formalism here (e.g., for modeling CPS), as this is outside of the

scope of this paper – our goal is investigating analysis scalability.

The �rst case concerns environmental monitoring with Wireless
Sensor Networks (WSNs), comprised of small devices scattered in

wide areas collecting measurement data. In order to gather data

from low-powered sensors, one or more mobile sinks can be used.

A sink is a gateway able to connect to a WSN device and also

to larger networks like the Internet; a sink downloads data from

a sensor when it is near it. This scenario entails veri�cation of

data collection; sinks move over the transportation network of the

city, collecting data from sensors. The second case concerns search
and rescue, a setting of emergency response where autonomous

UAVs are dispatched to locate victims in the city [45]; UAVs move

over buildings, looking for victims in need of assistance. We seek

to verify that all victims in the city are eventually located by the

swarm of UAVs, in all possible system behaviors.

6.2 Experiment Setup & Results
To utilize our approach in practice, the designer speci�es the system

model including its dynamics, as well as desired system properties.

The views can then be produced automatically as described in

Sec. 4.1. Implementation is available in accompanying material [1],

along with models used and an experiment reproduction kit.

In the following, we illustrate the speci�cation steps of the case

study. Bigraphical models of the physical space of cities are auto-

matically extracted [47] from randomly synthesized [5] domain

models in CityGML
3
. The randomly synthesized models are to con-

trol for size while maintaining a canonical structure of real cities.

Real city models can be used as well [47], but would distort results,

the goal of this case study being to demonstrate scalability in a con-

trollable setting. The bigraphical con�guration contains various

elements present in the city, such as Blocks , Buildinдs , Roads and
Crossroads , linked accordingly to capture the topological structure

inherent in the domain model [45]. Blocks may contain an arbitrary

3
CityGML is a standard for urban modeling, with models existing for multiple cities.



Multiple-View Analysis via BX ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

Table 1: Experiment results on cyber-physical city models.

Bigraph # of dLTS Interpret. BX

Size Rules St. (Trans.) Time Time

city1–Source 307 24 3977 (23k) 46m —

city1–UAV view 118 12 286 (1k) 2m 26ms

city1–WSN view 132 12 234 (1k) 13m 24ms

city2–Source 666 24 14046 (90k) 6h —

city2–UAV view 293 12 1895 (8k) 16m 53ms

city2–WSN view 215 12 347 (2k) 3m 52ms

city3–Source 1198 24 — >10h —

city3–UAV view 601 12 4697 (30k) 1.5h 65ms

city3–WSN view 279 12 423 (2k) 4m 68ms

number of buildings; each is connected to the one next to it, and to

a block’s surrounding roads if it is located in the block boundary,

while roads are linked to crossroads. Subsequently, sensors contain-

ing DataTokens, describing sensor deployment, and Victims to be

rescued are placed randomly; for the experiment setup, we consider

5 of each. Additionally, 4 UAV and Sink entities are also placed. Dy-

namics speci�cation encodes (i) movement of data sinks across the

transportation network in the city and data collection from sensors,

and (ii) movement of UAVs and victim localization. The elements

placed (UAVs, Sensors etc) are the same in all source models, in

order to control for size: we seek to evaluate how increasing the

problem size (i.e., city model size) a�ects scalability, while keeping

dynamics stable. Since we are concerned with evaluating scala-

bility – the reduction of transition system size and interpretation

time over views – and not veri�cation, we consider example LTLx
properties, aiming to (i) capture data collection by data sinks (e.g.,

�(�¬DataToken)) and (ii) ensure victim search and rescue by UAVs

(e.g., �(Victim → �¬Building?.(Victim | −0))).

After speci�cation, views are generated and interpreted as de-

scribed in Sec. 2.3. For BRS interpretation, external tools can be

used, e.g., [33, 44]. Thereupon, we report on experimental results.

View generation leads to smaller models both in terms of size in

nodes and ports (Column “Bigraph Size” in Tab. 1) as well as reduced

dynamics sets, with both reduced state-transition size and more e�-

cient interpretation times (Column “dLTS Size” and “Interpretation

Time” in Tab. 1) due to reduced con�guration sizes in states and

less concurrency due to reduced dynamics. Progressively larger city

models demonstrate this – note how the source model of city3 was
unable to be interpreted. Experiments were performed on an Intel

i5 3.1GHz; absolute values of interpretation time naturally depend

on tools used – what matters in our setting is the improvement

obtained by analyzing views, which drastically reduces space and

time. Model checking on the transition systems �nally produced

can then be readily performed with typical tools (e.g., SPOT [13]).

Multiple-Views within the Smart CityWork�ow.After the analyses
performed, we outline a scenario taking place in the smart city

design process, in which model synchronization proves useful:

(1) A stakeholder in the system indicates that sensors must

be placed additionally in city buildings for environmental

monitoring. The city model is updated to re�ect this.

(2) The change is propagated to the views corresponding to

the WSN and UAV scenarios, and analysis of the respec-

tive requirements is triggered. The column “BX Time” in

Table 1 records the time of projection for each new model.

We note that view generation time is in the order of tens of

milliseconds (source update time is similar, so omitted).

(3) Interpretation (and analysis) is performed yet again on the

two views – times are quite similar to the ones in Table 1,

so they are omitted. While analysis of the UAV requirement

may be successful, the requirement corresponding to data

collection is violated. Intuitively, since sensors are now also

located in buildings, data collection from them cannot occur

since sinks move only over the transportation network; a

change in the system design is required.

(4) Since UAVs move between buildings, an upgrade to their

hardware can render them equipped with data collection ca-

pabilities. The designer encodes an appropriate reaction rule,

and interpretation (and analysis) on the views is triggered

again; both requirements are �nally satis�ed.

Note that (i) in principle, every update in the views is supported

and will be correctly propagated, and that (ii) stakeholders may

analyze, debug or repair views, instead of the large source model.

6.3 Discussion & Limitations
As illustrated in the case study, the design process can be facilitated

by reasoning on multiple views, and analysis scalability can be

increased. Views can be produced via get and synchronization is

achieved by put transformations. Note that the time used for gener-

ating views and synchronizing models can be neglected compared

to the costly reactive system interpretation. However, as explained

in the following, we note that (i) the view generation method used

is conservative, and that (ii) future consideration of diverse case

studies should assess applicability in other domains.

By performing analysis on the projected con�gurations and

with reduced dynamics, view models bene�t from the reduced

concurrency and smaller size, resulting in smaller state-transition

structures submitted for veri�cation. However, in the scenarios pre-

sented, while respective requirements pertain a single model, they

are to a certain degree disjoint as they capture di�erent concerns.

We acknowledge that in the case where models have increased over-

lap in types, there may be no increase in e�ciency. This is due to the

view generating Algorithm 1, which conservatively (but e�ciently)

only uses types to derive view models. A more advanced extension

would re�ne the model further; we identify bigraph matching [36]

as the key driver for further automatic view re�nement.

To precisely discuss scalability, we must consider that the anal-

ysis technique we target is explicit-state model checking, which

relies on an exhaustive exploration of the state space; this intrin-

sically requires restricting a scope to be feasible. Exhaustive state
exploration is motivated by the small scope hypothesis, which states

that a high proportion of bugs can be found by examining a system

within a small scope [2, 23]. The approach presented allows to scale

up the boundaries within which it can be performed with accept-

able performance. The results obtained indicate that the technique

is e�ective within a model and work�ow of a CPS – stakeholders in

such a scenario typically work with overlapping views of the same

system (e.g., the physical space of the city). Practical experience

with other domains would provide additional useful assessments

and be an interesting future e�ort. Speci�cally, a systematic inves-

tigation would assess if meaningful properties and view models in

typical use cases in other domains exhibit overlap in types.



ASE 2020, 21 - 25 September, 2020, Melbourne, Australia Tsigkanos, et al.

Our multiple-view technique has been demonstrated as based

on bigraphs and BRS, which although generic and widely appli-

cable have not enjoyed e.g., practical applications. However, their

well-de�ned semantics and hierarchical structure led to elegant

algorithmic treatment (Sec. 4.1 and 5.1). We note that the technique

could be readily applied for generating reduced views for other

graph-based formalisms that utilize types, such as Graph Trans-

formation Systems, with similar procedures and adoption of BX to

support synchronization across models, guaranteeing consistency.

Finally and regarding the overall process, a typical design work-

�ow as illustrated in Sec. 6.2 shows the bene�t of view-based rea-

soning through synchronizations automatically updating models

when changes occur. Moreover, the performance of transformations

(rightmost column of Table 1) renders the procedure applicable to an

online setting. To this end, we believe that integration to a toolchain

supporting design and analysis as illustrated in this paper has merit

and can enable practical uses. User-facing issues pertaining to in-

tegration to some work�ow or pipeline, such as con�icts handling

(where e.g., two designers concurrently edit two views) or merging

should be tackled as well, along with general usability aspects.

7 RELATEDWORK
Our technique is founded on the idea that multiple views are needed

to reason about a system for di�erent requirements. Accordingly,

we classify relatedwork intomultiple-view reasoning, model slicing,

and related approaches of synchronization with BX.

Views as �rst-class citizens have been introduced by Nuseibeh

et al. in their work on requirements of composite systems [16, 38],

where requirements are often elicited from multiple sources ex-

pressing multiple and partial viewpoints. A follow-up proposes

interaction and integration of di�erent viewpoints contributing

to resulting requirements speci�cations [39]. Subsequent work in-

volved inconsistency handling between such viewpoints by sup-

plying logical rules [15]. The importance of a rich model providing

structure and integrating complementary views capturing di�er-

ent system facets was highlighted in [46]. Multi-view reasoning

was further adopted in architectures with multiple potentially con-

�icting concerns for quality requirements within mission-critical

systems [12]. Our reasoning framework is similarly based on mul-

tiple views; our goal however of view generation is analysis of

di�erent system facets according to a requirements speci�cation.

Slicing has been proposed as a program analysis technique [48],

to extract the parts of a program that a�ect (or are a�ected by)

execution of a given statement. Slicing has also been successfully

applied at the model level [3]; in proposition-based slicing [19]

temporal logic formulae are used to reduce the size of a transition

system for model checking. Wang et al [24] use slicing to reduce

the state space of UML statecharts when model checking LTLx . The
slicing criterion typically consists of elements from a property ϕ,
such as the set of states and transitions in ϕ, or the set of variables
in ϕ (e.g., for programs). The slice produced must preserve the be-

haviour of those parts of the model that a�ect the truth value of

ϕ [3]. The typical strategy to achieve this is a recursive application

of an operation until a �xed point is reached - which is similar to

the technique we employ upon a BRS speci�cation. Our technique

traverses bigraphical structures until a �xed point emerges, how-

ever we apply this on the system speci�cation using types from

bigraphical propositions within LTLx properties. We note that our

domain (graph-based reactive systems), problem domain (multiple-

view analysis) and use of BX (to maintain consistency between

slices) are to the best of our knowledge novel.

Bidirectional model transformations are a popular mechanism

for maintaining consistency of at least two related sources of infor-

mation. An approach that de�nes a consistency relation between

two models is the QVT Relations language in the OMG QVT stan-

dard, supported by a tool complying to checking semantics [32]. A

Triple Graph Grammar [43] can be used to conclude consistency,

particularly between graph-like structures, as well as to �nd a

partial correspondence model combined with linear optimization

techniques to detect maximum consistency portions [31]. How-

ever, it is time-consuming and non-trivial to manually maintain

round-tripping laws. Other approaches consider a standard forward-

direction with automatically derived backward transformations,

such as the Atlas language [49] or via graph querying [20]. However,

the forward transformation may not be injective and its ambiguity

of various corresponding put-directions is what makes bidirectional

programming challenging in practice. Recently, putback-based ap-

proaches [22] have been proposed to only allow writing putback

transformations. By contrast, a put transformation could uniquely

determine get by well-behavedness, and the putback-based pro-

gram guarantees that the get behaviours are unambiguously speci-

�ed. BiYacc [50] and BiFlux [40] are typical examples. BiGUL is a

formally veri�ed language which serves as a foundation for higher-

level putback-based languages [25, 26]. We adopt BiGUL in order

to have full control over the consistency restoration behaviors.

8 CONCLUSION AND FUTUREWORK
Early requirements validation has been recognized as a fundamental

software engineering principle. Within reactive systems, this can be

achieved by providing formal high-level system and requirements

speci�cations, their interpretation and mechanical veri�cation that

the system model formally satis�es the requirements. Fundamental

problems however, are scalability and usability – this paper o�ers

a novel approach that addresses exactly these problems. Regarding

usability, the proposed approach supports separation of concerns,

and thus the ability of di�erent stakeholders to only focus on views

that pertain to their interest. To support coherence of the entire

system, a contribution of this work is the ability to keep views and

speci�cation synchronized, achieved through bidirectional trans-

formations. Scalability is achieved by analyzing models tailored to

speci�c requirements, instead of the complete system.

In future work, we plan to improve the way submodels are pro-

jected for a given property. The type-based approach we presented

is conservative and can produce non-optimal submodels, although

submodels are produced very e�ciently. Instances of nodes instead

of types might be taken into account to further reduce submodel

size. The technique developed has been exploited in the case of

a speci�c formalism based on bigraphs. The idea of view-based

requirements validation, however, is more general and could be

applied to generating reduced model views for other formalisms

that utilize types. such as general Graph Transformation Systems.

Likewise, bidirectional transformation techniques may be adopted

in these other cases to support synchronization across models, guar-

anteeing consistency across system design and development.



Multiple-View Analysis via BX ASE 2020, 21 - 25 September, 2020, Melbourne, Australia

ACKNOWLEDGEMENTS
Research partially supported byAustrian Science Fund (FWF) project

M 2778-N “EDENSPACE” and the National Natural Science Foun-

dation of China under Grant Nos. 61620106007 and 61751210.

REFERENCES
[1] 2020. Reproduction kit, models, and accompanying implementation.

http://dsg.tuwien.ac.at/sta�/ctsigkanos/ase20.

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2003.

Evaluating the small scope hypothesis. In In Popl, Vol. 2. Citeseer.
[3] Kelly Androutsopoulos, David Clark, Mark Harman, Jens Krinke, and Laurence

Tratt. 2013. State-based model slicing: A survey. ACM Computing Surveys (CSUR)
45, 4 (2013), 53.

[4] Ramesh Bharadwaj and Constance L. Heitmeyer. 1999. Model Checking Complete

Requirements Speci�cations Using Abstraction. Autom. Softw. Eng. 6, 1 (1999),
37–68.

[5] Filip Biljecki, Hugo Ledoux, and Jantien Stoter. 2016. Generation of multi-LOD

3D city models in CityGML with the procedural modelling engine Random3Dcity.

ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. (2016), 51–59.
[6] Ingo Brückner and Heike Wehrheim. 2005. Slicing Object-Z speci�cations for

veri�cation. In International Conference of B and Z Users. Springer, 414–433.
[7] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. 2000.

NuSMV: a new symbolic model checker. International Journal on Software Tools
for Technology Transfer 2, 4 (2000), 410–425.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking. MIT press.

[9] James C Corbett, Matthew B Dwyer, John Hatcli�, Shawn Laubach, Corina S

Pasareanu, Hongjun Zheng, et al. 2000. Bandera: Extracting �nite-state models

from Java source code. In Proceedings of the 2000 International Conference on
Software Engineering. ICSE 2000 the New Millennium. IEEE, 439–448.

[10] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,

and Michael Löwe. 1997. Algebraic Approaches to Graph Transformation-Part I:

Basic Concepts and Double Pushout Approach.. In Handbook of Graph Grammars.
163–246.

[11] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,

and James F. Terwilliger. 2009. Bidirectional Transformations: A Cross-Discipline

Perspective. In Theory and Practice of Model Transformations, 2nd Intl. Conf, ICMT
2009, Zurich, Switzerland, June 29-30, 2009. Proceedings. 260–283.

[12] Kadir Alpaslan Demir. 2015. Multi-View Software Architecture Design: Case

Study of a Mission-Critical Defense System. Computer and Information Science 8,
4 (2015), 12–31.

[13] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud

Michaud, Etienne Renault, and Laurent Xu. 2016. Spot 2.0 — a framework for LTL

and ω-automata manipulation. In Proc. of the 14th Intl. Symposium on Automated
Technology for Veri�cation and Analysis (ATVA’16), Vol. 9938. Springer, 122–129.

[14] Kousha Etessami. 1999. Stutter-invariant languages, ω-automata, and temporal

logic. In Intl. Conference on Computer Aided Veri�cation. Springer, 236–248.
[15] Anthony Finkelstein, Dov M. Gabbay, Anthony Hunter, Je� Kramer, and Bashar

Nuseibeh. 1993. Inconsistency Handling in Multi-Perspective Speci�cations. In

Software Engineering - ESEC ’93, 4th European Software Engineering Conference,
Garmisch-Partenkirchen, Germany, September 13-17, 1993, Proceedings. 84–99.

[16] Anthony Finkelstein, Je� Kramer, Bashar Nuseibeh, L. Finkelstein, and Michael

Goedicke. 1992. Viewpoints: A Framework for Integrating Multiple Perspec-

tives in System Development. International Journal of Software Engineering and
Knowledge Engineering 2, 1 (1992), 31–57.

[17] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,

and Alan Schmitt. 2007. Combinators for bidirectional tree transformations: A

linguistic approach to the view-update problem. ACM Trans. Program. Lang. Syst.
29, 3 (2007), 17.

[18] Vinod Ganapathy and S. Ramesh. 2002. Slicing Synchronous Reactive Programs.

In Electronic Notes in Theoretical Computer Science, 65(5). 1st Workshop on Syn-
chronous Languages, Applications, and Programming. Elsevier, Grenoble, France.

[19] John Hatcli�, Matthew B Dwyer, and Hongjun Zheng. 2000. Slicing software for

model construction. Higher-order and symbolic computation 13, 4 (2000), 315–353.
[20] Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and Keisuke Nakano. 2009. A

compositional approach to bidirectional model transformation. In 31st Interna-
tional Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Companion Volume. 235–238.

[21] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on software
engineering 23, 5 (1997), 279–295.

[22] Zhenjiang Hu, Hugo Pacheco, and Sebastian Fischer. 2014. Validity Checking

of Putback Transformations in Bidirectional Programming. In FM 2014: Formal
Methods - 19th Intl. Symposium, Singapore, May 12-16, 2014. Proc. 1–15.

[23] Daniel Jackson and Craig Damon. 1996. Elements of Style: Analyzing a Software

Design Feature with a Counterexample Detector. IEEE Trans. Software Eng. 22, 7
(1996), 484–495.

[24] Wang Ji, Dong Wei, and Qi Zhi-Chang. 2002. Slicing hierarchical automata for

model checking UML statecharts. In International Conference on Formal Engineer-
ing Methods. Springer, 435–446.

[25] Hsiang-Shang Ko and Zhenjiang Hu. 2018. An axiomatic basis for bidirectional

programming. PACMPL 2, POPL (2018), 41:1–41:29.

[26] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. 2016. BiGUL: a formally veri�ed

core language for putback-based bidirectional programming. In Proc. of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2016, St. Petersburg, FL, USA, January 20 - 22, 2016. 61–72.

[27] Hsiang-Shang Ko. 2013. BiGUL: The Bidirectional Generic Update Language.

https://bitbucket.org/prl_tokyo/bigul.

[28] Sébastien Labbé and Jean-Pierre Gallois. 2008. Slicing communicating automata

speci�cations: polynomial algorithms for model reduction. Formal Aspects of
Computing 20, 6 (2008), 563–595.

[29] Simon S Lam and A Udaya Shankar. 1984. Protocol veri�cation via projections.

IEEE transactions on software engineering 4 (1984), 325–342.

[30] Leslie Lamport. 1983. What good is temporal logic?. In IFIP congress, Vol. 83.
657–668.

[31] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. 2017. Inter-model Consis-

tency Checking Using Triple Graph Grammars and Linear Optimization Tech-

niques. In Fundamental Approaches to Software Engineering - 20th International
Conference, Uppsala, Sweden, April 22-29, 2017, Proceedings. 191–207.

[32] NunoMacedo and Alcino Cunha. 2013. Implementing QVT-R Bidirectional Model

Transformations Using Alloy. In Fundamental Approaches to Software Engineering
- 16th Intl. Conference, FASE 2013, Rome, Italy, March 16-24, 2013. Proc. 297–311.

[33] A. Mansutti, M. Miculan, and M. Peressotti. [n.d.]. Multi-agent Systems Design

and Prototyping with Bigraphical Reactive Systems. In 14th IFIP WG 6.1 Intl.
Conference, DAIS 2014, Berlin, Germany, June 3-5, 2014.

[34] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger. 2019. Speci�ca-

tion Patterns for Robotic Missions. IEEE Transactions on Software Engineering
(2019), 1–1.

[35] Lynette I Millett and Tim Teitelbaum. 2000. Issues in slicing PROMELA and its

applications to model checking, protocol understanding, and simulation. Inter-
national Journal on Software Tools for Technology Transfer 2, 4 (2000), 343–349.

[36] Robin Milner. 2009. The Space and Motion of Communicating Agents. Cambridge

University Press.

[37] Bashar Nuseibeh, Je� Kramer, and Anthony Finkelsteiin. 2003. ViewPoints:

meaningful relationships are di�cult!. In Proceedings of the 25th International
Conference on Software Engineering. IEEE Computer Society, 676–681.

[38] Bashar Nuseibeh, Je� Kramer, and Anthony Finkelstein. 1993. Expressing the

Relationships Between Multiple Views in Requirements Speci�cation. In Proc. of
the 15th Intl. Conf. on Software Engineering, USA, May 17-21, 1993. 187–196.

[39] Bashar Nuseibeh, Je� Kramer, and Anthony Finkelstein. 1994. A Framework for

Expressing the Relationships Between Multiple Views in Requirements Speci�-

cation. IEEE Trans. Software Eng. 20, 10 (1994), 760–773.
[40] Hugo Pacheco, Tao Zan, and Zhenjiang Hu. 2014. BiFluX: A Bidirectional Func-

tional Update Language for XML. In Proc. of the 16th International Symposium on
Principles and Practice of Declarative Programming, UK, Sept. 8-10, 2014. 147–158.

[41] Doron Peled. 1994. Combining partial order reductions with on-the-�y model-

checking. In International Conference on Computer Aided Veri�cation. Springer,
377–390.

[42] Doron Peled and Thomas Wilke. 1997. Stutter-invariant temporal properties are

expressible without the next-time operator. Inform. Process. Lett. 63, 5 (1997),

243–246.

[43] Andy Schürr. 1994. Speci�cation of Graph Translators with Triple Graph Gram-

mars. In Graph-Theoretic Concepts in Computer Science, 20th International Work-
shop, WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings. 151–163.

[44] Michele Sevegnani andMu�y Calder. 2015. Bigraphs with Sharing. Theor. Comput.
Sci. 577 (2015), 43–73.

[45] Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. 2017. Modeling and veri-

�cation of evolving cyber-physical spaces. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, 2017. 38–48.

[46] Axel van Lamsweerde. 2009. Building Multi-View System Models for Require-

ments Engineering. In RE 2009, 17th IEEE International Requirements Engineering
Conference, Atlanta, Georgia, USA, August 31 - September 4, 2009. 368–369.

[47] Ennio Visconti, Christos Tsigkanos, Zhenjiang Hu, and Carlo Ghezzi. 2019. Model-

Driven Design of City Spaces via Bidirectional Transformations. In Proceedings
of the 22nd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS 2019, Munich, September 15-20, 2019. ACM.

[48] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th international
conference on Software engineering. IEEE Press, 439–449.

[49] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and

Hong Mei. 2007. Towards automatic model synchronization from model trans-

formations. In 22nd IEEE/ACM International Conference on Automated Software
Engineering November 5-9, 2007, Atlanta, Georgia, USA. 164–173.

[50] Zirun Zhu, Hsiang-Shang Ko, Pedro Martins, João Saraiva, and Zhenjiang Hu.

2015. BiYacc: Roll Your Parser and Re�ective Printer into One. In Proc. of the 4th
Intl. Workshop on Bidirectional Transformations L’Aquila, Italy, 2015. 43–50.

https://bitbucket.org/prl_tokyo/bigul

	Abstract
	1 Introduction
	2 Background
	2.1 Modeling with Bigraphs
	2.2 Modeling Dynamics with BRS
	2.3 Analysis of Reactive Behaviors 

	3  View-Based Reasoning Framework 
	4  Property-Driven View Generation
	4.1  Views through Type-based Transformation 
	4.2 Correctness of Model Projections

	5 Model Synchronization
	5.1 A BX Algorithm
	5.2 Implementing BX using BiGUL

	6 Evaluation
	6.1 Multiple-Views in a Smart City Design
	6.2 Experiment Setup & Results
	6.3 Discussion & Limitations 

	7 Related Work
	8 Conclusion and Future Work
	References

